Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (6): 473-477    
  研究报告 本期目录 | 过刊浏览 |
封孔处理等离子喷涂Cr2O3涂层耐蚀性的电化学表征
侯岩枫1,2,许立坤2,沈承金1,李相波2
1. 中国矿业大学材料科学与工程学院 徐州 221116 2. 中船重工七二五所  海洋腐蚀与防护国防科技重点实验室 青岛 266101
ELECTROCHEMICAL CHARACTERIZATION FOR CORROSION RESISTANCE OF PLASMA-SPRAYED Cr2O3 COATING WITH SEALING
HOU Yanfeng1,2, XU Likun2, SHEN Chengjin1, LI Xiangbo2
1. School of Materials Science and Engineering, China University of Mining & Technology, Xuzhou 221116
2. State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Materials Research Institute, Qingdao 266101
全文: PDF(1000 KB)  
摘要: 

用等离子喷涂工艺在Q235钢基体上制备Cr2O3陶瓷涂层,并采用磷酸铝和环氧树脂对其进行封孔处理。利用图像分析法和电化学方法对封孔前后涂层的孔隙率进行了测试,采用弱极化技术和电化学阻抗谱技术对封孔前后涂层的耐蚀性能进行了研究。结果表明,封孔处理提高了涂层的耐蚀性能,环氧树脂封孔涂层的耐蚀性能更优异;陶瓷涂层在腐蚀介质中耐蚀性能主要取决于涂层的孔隙率。

关键词 等离子喷涂Cr2O3涂层封孔处理孔隙率电化学    
Abstract

Cr2O3 coating was deposited on Q235 steel by means of plasma-sprayed technology, which was sealed by aluminum phosphate and epoxy resin respectively. The porosity of the coating was investigated by graph analysis and electrochemical measurement, and the corrosion resistance of the coating was characterized by polarization curve and electrochemical impedance spectroscopy (EIS). It is found that the sealing treatment can elevate corrosion resistance of the Cr2O3 coating. Compared with the coating sealed with aluminum phosphate, the epoxy resin-sealed coating shows excellent corrosion resistance. The electrochemical behavior of the Cr2O3 coating in the corrosive electrolyte depends mainly on the porosity of the coating.

Key words13cmrm plasma spraying    Cr2O3 coating    sealing treatment    porosity, electrochemistry
收稿日期: 2012-01-09     
ZTFLH:  TG174.442  
通讯作者: 许立坤     E-mail: xulk@sunrui.net
Corresponding author: Likun Xu     E-mail: xulk@sunrui.net

引用本文:

侯岩枫 许立坤 沈承金 李相波. 封孔处理等离子喷涂Cr2O3涂层耐蚀性的电化学表征[J]. 中国腐蚀与防护学报, 2012, 32(6): 473-477.

链接本文:

https://www.jcscp.org/CN/Y2012/V32/I6/473

 


[1] Li S B, Xu L K, Shen C J, et al. Performance of erosion-resistant ceramic coatings deposited by plasma spraying[J]. J. Chin. Soc. Corros. Prot., 2011, 31(3): 198-201

(李守彪, 许立坤, 沈承金等. 等离子喷涂耐冲蚀陶瓷涂层的性能研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 198-201)

[2] Wang Y, Tian W, Zhang T, et al. Microstructure, spallation and corrosion of plasma sprayed Al2O3-13%TiO2 coatings[J]. Corros. Sci., 2009, 51: 2924-2931

[3] Sugehis L, Linda G, Mariana H. Effect of sealing treatment on the corrosion resistance of thermal-sprayed ceramic coatings[J]. Surf. Coat. Technol., 2004, 188-189: 135-139

[4] Jiang Z Q, Xi S M, Li H L. Present situation and prospects of sealing treatment of plasma sprayed ceramic[J]. Ord. Mater. Sci. Eng., 1999, 22(3):56-60

(江志强, 席守谋, 李华伦. 等离子喷涂陶瓷涂层封孔处理现状与展望[J]. 兵器材料科学与工程, 1999, 22(3): 56-60)

[5] Cao G P, Zhang D J. Surface treatment of plasma sprayed ZrO2 coating[J]. Eng. Chem. Metall., 1997, 18(2): 173-175

(曹国平, 张登军. 等离子喷涂氧化锆涂层的表面处理[J]. 化工冶金, 1997, 18(2): 173-175)

[6] Gong Z Q, Wu Z J, Liu Y F, et al. Microstructure of plasma sprayed Al2O3-13% TiO2 coating with laser remelting[J]. China Surf. Eng., 2011, 24(1): 12-15

(龚志强, 吴子健, 刘焱飞等. 激光重熔等离子喷涂Al2O3-13%TiO2涂层的组织结构[J]. 中国表面工程, 2011, 24(1): 12-15)

[7] Pettinen I M, Korhonen A S, Harju E, et al. Comparison of the corrosion resistance of TiN and (Ti,Al)N coatings[J]. Surf. Coat. Technol., 1992, 50: 161-168

[8] Tian W, Wang Y, Zhang T, et al. Sliding wear and electrochemical corrosion behavior of plasma sprayed nanocomposite Al2O3-13% TiO2 coatings[J]. Mater. Chem. Phys., 2009, 118: 37-45

[9] Yang H G, Zhu X M, Lei M K. Evaluation of porosity of hard coating by corrosion electrochemistry[J]. Corros. Sci. Prot. Technol., 2005, 17(6): 413-417

 (杨海钢, 朱雪梅, 雷明凯. 腐蚀电化学方法评价硬质涂层孔隙率[J]. 腐蚀科学与防护技术, 2005, 17(6): 413-417)

[10 Jia Z J, Li X G, Du C W. Effects of potential scanning rate on testing results of kinetic parameters of electrode reaction[J]. Corrs. Prot., 2010, 31(11): 829-832

(贾志军, 李晓刚, 杜翠微. 电位扫描速率对电极过程动力学参数测试结果的影响[J]. 腐蚀与防护, 2010, 31(11): 829-832)

[11] Guo J H, Wu J W, Ni X J. Electrochemical behavior of Fe-based coating containing amorphous phase prepared by electric arc spraying[J]. Acta Metall. Sin., 2007, 43(7): 780-784

(郭金花, 吴嘉伟, 倪晓俊. 电弧喷涂非晶相的Fe基涂层的电化学行为[J]. 金属学报, 2007, 43(7): 780-784)
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[5] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[6] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[7] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[8] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[9] 付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[10] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[11] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[12] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[13] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[14] 孙硕, 杨杰, 钱薪竹, 常人丽. Ni-Cr-P化学镀层的制备与电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[15] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.