Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (4): 327-332    
  研究报告 本期目录 | 过刊浏览 |
Zn-Co-TiO2纳米复合镀层的光生阴极保护特性
万冰华1,2,费敬银1,冯光勇2,张午花1,王少兰1
1. 西北工业大学理学院应用化学系 西安 710072;
2. 航天精工(天津)制造有限公司 天津 300300
PHOTOGENERATED CATHODE PROTECTION PROPERTIES OF Zn-Co-TiO2 NANOCOMPOSITE COATINGS
WAN Binghua1,2, FEI Jingyin1, FENG Guangyong2, ZHANG Wuhua1, WANG Shaolan1
1. Department of Applied Chemistry, College of Science, Northwestern Polytechnical University, Xi'an 710072
2. Tianjin Aerospace Precision Products Co., Ltd, Tianjin 300300
全文: PDF(1607 KB)  
摘要: 用纳米复合电沉积技术在低碳钢表面制备了Zn-Co-TiO2纳米复合镀层。用SEM、EDS和XRD等技术手段对样品进行了分析与表征。结果表明,镀层中TiO2的含量约为12.63%,并均匀分散在镀层中,可以起到细化Zn-Co合金镀层晶粒的作用,并使Zn-Co合金镀层的耐蚀性能得到提高。用紫外光辅助照射电极电位监测方法研究Zn-Co-TiO2纳米复合镀层光生阴极保护特性。结果表明,在紫外光照射下,镀层的电极电位负移,说明镀层具有光生阴极保护性能;关闭紫外光灯后,其电极电位正移,但仍低于镀层未光照前的电极电位。在400℃下氧化6 h后镀层表面生成了ZnO薄膜,其与TiO2的协同作用可进一步提高镀层的光生阴极保护性能。
关键词 光生阴极保护Zn-Co合金镀层TiO2电沉积耐蚀性    
Abstract:Zn-Co-TiO2 nanocomposite coatings were prepared by electrodeposition technique on mild steel. SEM, EDS and XRD examinations revealed that 12.63% TiO2 nanoparticles were uniformly dispersed in the nanocomposite coating and refined the crystalline size, consequently, the corrosion resistance of Zn-Co alloy coatings was further improved. The photogenerated cathode protection properties of Zn-Co-TiO2 nanocomposite coating were investigated by monitoring the electrode potential under ultraviolet (UV) illuminated conditions, The results showed the electrode potentials of Zn-Co-TiO2 nanocomposite coating negatively shifted under UV illuminated, which indicated that Zn-Co-TiO2 nanocomposite coating had photogenerated cathode protection properties; When the UV light was turned off, the electrode potentials shifted to the positive direction but were still lower than the initial electrode potential before UV illuminated; it was also found that the oxidation at 400℃ for 6 h could further improve the photogenerated cathode protection properties and the reason for this is attributed to photogeneated cathode protection properties of ZnO layer generated on the surface and its synergy with TiO2.
Key wordsphotogenerated cathode protection    Zn-Co alloy coating    TiO2    electrodeposition    corrosion resistance
收稿日期: 2011-06-20     
ZTFLH: 

TG174.41

 
基金资助:

陕西省自然科学研究项目(2005-22B)资助

通讯作者: 万冰华     E-mail: wanbinghua2009@163.com
Corresponding author: WAN Binghua     E-mail: wanbinghua2009@163.com
作者简介: 万冰华,男,1985年生,硕士,研究方向为材料的腐蚀与防护

引用本文:

万冰华,费敬银,冯光勇,张午花,王少兰. Zn-Co-TiO2纳米复合镀层的光生阴极保护特性[J]. 中国腐蚀与防护学报, 2012, 32(4): 327-332.
WAN Bing-Hua. PHOTOGENERATED CATHODE PROTECTION PROPERTIES OF Zn-Co-TiO2 NANOCOMPOSITE COATINGS. J Chin Soc Corr Pro, 2012, 32(4): 327-332.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I4/327

[1] Shan C X , Hou X H, Choy K L. Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition[J]. Surf. Coat. Technol., 2008, 202(11): 2399-2402

[2] Meinert K, Uerpmann C, Matschullat J, et al. Corrosion and leaching of silver doped ceramic IBAD coatings on SS 316L under simulated physiological conditions[J]. Surf. Coat. Technol., 1998, 103-104: 58-65

[3] Yao Z P, Jiang Z H, Wang F P.

Study on corrosion resistance and roughness of micro-plasma oxidation ceramic coatings on Ti alloy by EIS technique[J]. Electrochim. Acta, 2007, 52(13): 4539-4546

[4] Hamdy A S, Butt D P, Ismail A A. Electrochemical impedance studies of sol-gel based ceramic coatings systems in 3.5% NaCl solution[J]. Electrochim. Acta, 2007, 52(9): 3310-3316

[5] Li M C, Luo S Z, Wu P F, et al. Photocathodic protection effect of TiO2 films for carbon steel in 3% NaCl solutions[J]. Electrochim. Acta, 2005, 50(16-17): 3401-3406

[6] Yun H, Lin C J, Li J, et al. Low-temperature hydrothermal formation of a net-like structured TiO2 film and its performance of photogenerated cathode protection[J]. Appl. Surf. Sci., 2008, 255(5): 2113-2117

[7] Yuan J N, Tsujikawa S. Characterization of sol-gel-derived TiO2 coating and their photoeffects on copper substrates[J]. J. Electrochem. Soc., 1995, 142(10): 3444-3450

[8] Konishi T, Tsujikawa S. Photo-effect of sol-gel derived TiO2 coating on 304 stainless steel[J]. Zairyo-to-Kankyo, 1997, 46(11): 709-716

[9] Ohko Y, Saitoh S, Tatsuma T, et al. Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel[J]. J. Electrochem. Soc. B, 2001, 148(1): 24-28

[10] Park H, Kim K Y, Choi W. Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode[J]. J. Phys. Chem. B, 2002, 106(18): 4775-4781

[11] Higashi K, Fukushima H, Urakawa T. Mechanism of the electrodeposition of zinc alloys containing a small amount of cobalt[J]. J. Electrochem. Soc., 1981, 128(10): 2081-2085

[12] Younan M M. Electrodeposition of ternary zinc-nickel-cobalt alloys from an acidic chloride bath[J]. Met. Finish., 2000, 98(10): 38-42

[13] Townsend H E, Borzillo A R. Twenty-year atmosphericcor-rosion tests of hot-dip coated sheet steel[J]. Mater. Performance., 1987, 26(7): 37-41

[14] Duan Y G, Fu W C, Peng Q J. Electroplating Zn-Al alloy technology[J]. J. Wuhan. Univ. Technol., 2002, 17(3): 54-55

[15] Abibsi A, Dennis J K, Short N R. The effect of plating variables on zinc-nickel alloy electrodeposition[J]. Trans. Inst. Met. Finish., 1991, 69(4): 145-148

[16] Bajat J B, Miskovic-Stankovic V B, Maksimovic M D, et al. Electrochemical deposition and characterization of Zn-Co alloys and corrosion protection by electrodeposited epoxy coating on Zn-Co alloy[J]. Electrchim. Acta, 2002, 47(25): 4101-4112

[17] Short N R, Abibsi A, Nennis J K. Corrosion resistance of electroplated zinc alloy coatings[J]. Trans. Inst. Met. Finish., 1984, 67(1): 73-77

[18] Fei J Y, Liang G Z, Xin W L. Electrodeposition of com-positionally modulated zinc-cobalt alloy multilayer coatings[J]. Chin. J. Polym. Sci., 2005, 13(2): 259-265

[19] An M Z, Yang Z L, Li W L, et al. Study on the corrosion resistance and the structure of Zn-Co alloy coating[J]. Mater. Prot., 1998, 31(4): 5-6

     (安茂忠, 杨哲龙, 李文良等. 锌钴合金镀层结构与耐蚀性研究[J]. 材料保护, 1998, 31(4): 5-6)

[20] Hino M, Hiramatsu M, Murakami K. Electroplated Zn-Ni-SiO2 composite coating treated with a silane coupling agent to replace chromating[J]. Acta Metall. Sin. (Eng. Lett.), 2005, 18(3): 416-422

[21] Fustes J, Gomes A, Silva Pereira M I da. Electrodeposition of Zn-TiO2 nanocomposite films-effect of bath composition[J]. J. Solid State Chem., 2008, 12(11): 1435-1443

[22] Praveen B M, Venkatesha T V. Electrodeposition and properties of Zn-nanosized TiO2 composite coatings[J]. Appl. Surf. Sci., 2008, 254(8): 2418-2424

[23] Zhou M, Tacconi N R de, Rajeshwar K. Preparation and characterization of nanocrystalline composite (nanocomposite) films of titanium dioxide and nickel by occlusion electrodeposition[J]. J. Electroanal. Chem., 1997, 421: 111-120

[24] Baghery P, Farzam M, Mousavi A B, et al. Ni-TiO2 nano-composite coating with high resistance to corrosion and wear[J]. Surf. Coat. Technol., 2010, 204(23): 3804-3810

[25] Park H, Kim K Y, Choi W. A novel photoelectrochemical method of metal corrosion prevention using a TiO2 solar panel[J]. Chem. Commun., 2001, 3: 281-282

[26] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37-38

[27] Jing L Q, Xu Z L, Sun X J, et al. Photocatalytic activity of ZnO and TiO2 particles and their deactivation and regeneration[J]. Chin. J. Catal., 2003, 2(3): 175-179

     (井立强, 徐自力, 孙晓君等. ZnO和TiO2粒子的光催化活性及其失活与再生[J]. 催化学报, 2003, 2(3): 175-179)

[28] Deguchi T, Imai K, Matsui H, et al. Rapid electroplating of photocatalytically highly active TiO2-Zn nanocomposite films on steel[J]. J. Mater. Sci., 2001, 36(19): 4723-4729
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[3] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[4] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[5] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[8] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[9] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[10] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[11] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[12] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[13] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[14] 赖德林,孔纲,车淳山. 硅酸盐封闭对TiO2转化膜耐蚀性的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
[15] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.