Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (4): 311-316    
  研究报告 本期目录 | 过刊浏览 |
水性Al-Zn-Si合金涂层微观组织及腐蚀性能研究
蒋穹1,缪强1,姚正军1,魏小昕2
1. 南京航空航天大学材料科学与技术学院 南京 211106
2. 江苏省麟龙新材料股份有限公司 无锡 214183
MICROSTRUCTURE AND CORROSION RESISTANCE OF WATERBORNE Al-Zn-Si ALLOY COATING
JIANG Qiong1, MIAO Qiang1, YAO Zhengjun1, WEI Xiaoxin2
1. College of Material Science & Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106
2. Jiangsu Linlong New Materials Co. Ltd, Wuxi 214183
全文: PDF(2014 KB)  
摘要: 用Al-Zn-Si合金粉末制备热烧结铝锌硅合金涂层,通过盐水浸泡实验和电化学测试研究其耐蚀性能,并结合扫描电镜和X射线衍射分析等手段观察Al-Zn-Si合金涂层显微组织及其在盐水中的腐蚀产物形貌,分析涂层的耐蚀机理。结果表明,Al-Zn-Si合金涂层也具有阴极保护作用,且Al-Zn-Si合金延缓涂层金属粉末的消耗,使牺牲阳极的腐蚀速率减慢。
关键词 Al-Zn-Si合金涂层防腐涂料盐水腐蚀阴极保护    
Abstract:A kind of anti-corrosive paint consisted of epoxy silane and lamellar Al-Zn-Si alloy particles was introduced in this paper. Corrosion properties of waterborne Al-Zn-Si alloy coating were tested through salt water immersion method, electrochemical method. Furthermore, the microstructure, corrosion products of the coating were detected by means of SEM, EDS and XRD. The experimental results showed that Al-Zn-Si alloy particles dispersed in coating in the form of flake structure which formed a more effective physical shield, extending the path of the corrosive medium to body; furthermore, in the corrosion processes corrosion product film formed which filled in pores of the coating and had good shielding property; Tafel curves indicated that Al-Zn-Si alloy was a good sacrificial anode material of aluminum. In addition, anti-corrosive mechanism of Al-Zn-Si alloy coating was analyzed which possessed excellent cathodic protection, and its excellent corrosion resistance was related to lamellar Al-Zn-Si alloy powder which had lower dissolution rate, inhibited the corrosion of the coating and prolonged the duration of cathodic protection.
Key wordsAl-Zn-Si alloy coating    corrosion protective coatings    salt water corrosion    cathodic protection
收稿日期: 2011-06-28     
ZTFLH: 

TG179

 
基金资助:

江苏省普通高校研究生科研创新计划项目(CXLX 120149)、江苏省科技成果转化专项基金(BA2011029)和江苏省产学研联合创新资金-
前瞻性联合研究项目(BY2011101)和江苏省普通高校研究生科研创新计划资助项目(CXLX12-0149)中央高校基本科研业务费专项资金资助

通讯作者: 缪强     E-mail: miaoqiang@nuaa.edu.cn
作者简介: 蒋穹,女,1982年生,博士,研究方向为金属腐蚀与防护

引用本文:

蒋穹,缪强,姚正军,魏小昕. 水性Al-Zn-Si合金涂层微观组织及腐蚀性能研究[J]. 中国腐蚀与防护学报, 2012, 32(4): 311-316.
JIANG Kong, MU Jiang, YAO Zheng-Jun, WEI Xiao-Xin. MICROSTRUCTURE AND CORROSION RESISTANCE OF WATERBORNE Al-Zn-Si ALLOY COATING. J Chin Soc Corr Pro, 2012, 32(4): 311-316.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I4/311

[1] Zhang H B. Corrosion resistance of the hot dip 55% aluminum-zinc-1.6%silicon alloy coatings on steel [J]. J. Shanghai Jiaotong Univ., 1998, 32(9): 121-125

    (张洪斌. 55%铝-锌-1.6%硅合金镀层的耐蚀性能[J].上海交通大学学报, 1998, 32(9): 121-125)

[2] Guo Y Q. An investigation on the corrosion behavior of 55%Al-Zn-1.6%Si alloy coating in ammonia water [J]. Dev. Appl. Mater., 2003, 18(2): 25-27

    (郭永强. 热浸55%Al-Zn-1.6%Si合金镀层在氨水中的腐蚀行为研究[J].材料开发与应用, 2003, 18(2): 25-27)

[3] Zhang H B, Huang Y C, Pan J W, et al. Crevice corrosion of Al-1.6%Si coating and 55%Al-Zn-1.6%Si alloy coating [J]. Chlor-alkali Ind., 1996,(5): 12-15

    (张洪斌, 黄永昌, 潘健武等. Al-1.6%Si镀层和55%Al-Zn-1.6%Si合金镀层的缝隙腐蚀 [J]. 氯碱工业, 1996, (5): 12-15)

[4] Wen G N, Liu X B. Electrochemical behaviour and corrosion resistance of zinc based coating [J]. Mater. Prot., 1998, 31(2): 8-9

    (文光男, 刘希柏. 锌基涂层的电化学行为及防蚀机理 [J]. 材料保护, 1998, 31(2): 8-9)

[5] Liu K R, Ma P C, Pu N W, et al. Influence of silicon coating on the corrosion resistance of Zn-Al-Mg-RE-Si alloy [J]. J. Rare Earths, 2010, 28(Suppl.): 378-381

[6] Li C L. Preparation of Zn-Al pseudo alloy coatings and their corrosion resistance in marine environment [D]. Beijing: China University of Petroleum, 2010

    (李春玲. Zn-Al伪合金涂层的制备及耐海洋腐蚀性能研究[D]. 北京: 中国石油大学, 2010)

[7] Li J, Laufer E E, Masounave J. Wear in Zn-Al-Si alloys [J]. Wear, 1993, 165(1): 51-56

[8] Xiao Y D, Fu Z Y, Zhu P, et al. Study on corrosion resistance of spray Zn85Al alloy coating for steel construction [J]. Therm. Spray Technol., 2010, 2(2): 19-25

    (萧以德, 付志勇, 朱鹏等. 热喷涂锌-铝合金涂层对钢结构防护性能研究 [J]. 热喷涂技术, 2010, 2(2): 19-25)

[9] Zhang H B. A New heavy duty anticorrosive coating-Zn-Al alloy flake coating [J]. Chlor-alkali Ind., 1998, (6): 26-29

    (张洪斌. 新型重防腐蚀涂料-锌铝合金鳞片涂料[J]. 氯碱工业, 1998,(6): 26-29)

[10] Hernandez M, Genesca J, Uruchurtu J, et al. Effect of an inhibitive pigment zinc-aluminum-phosphate (ZAP) on the corrosion mechanisms of steel in wa-terborne coatings [J]. Prog. Org. Coat., 2006, 56(2-3): 199-206

[11] Vesely D, Kalendova A. Anticorrosion efficiency of ZnxMgyAl2O4 core-shell spinels in organic coatings [J]. Prog. Org. Coat., 2008, 62(1): 5-20

[12] Cong S H, Yang H L, Wang X C, et al. Salt spray corrosion properties of the paint coatings rich in Zn-Al-Mg-Ce alloy powders [J]. J. Wuhan Univ. Sci. Technol., 2009, 32(3): 242-246

     (从善海, 杨洪林, 汪旭超等. 富Zn-Al-Mg-Ce合金油漆涂层的盐雾腐蚀性能研究 [J]. 武汉科技大学学报, 2009, 32(3): 242-246)

[13] Cong S H, Hou Q. Corrosion resistance performance of epoxy Zn-Al-Mg-Ce riched alloy coating [J]. Chin. Surf. Eng., 2010, 23(1): 109-112

     (从善海, 侯强. 环氧富Zn-Al-Mg-Ce合金涂层耐腐蚀性能 [J]. 中国表面工程, 2010, 23(1): 109-112)

[14] JB/T10619-2006, Specification for chromium-free zinc-aluminum coating[S].

     (JB/T10619-2006, 无铬锌铝涂层技术条件[S].)

[15] Xie D M, Hu J M, Tong S P, et al. Influence of zinc content and surface contamination on the electrochemical behaviors of epoxy zinc-rich primer [J]. Acta Metall. Sin., 2004, 40(1): 103-108

     (谢德明, 胡吉明, 童少平等. Zn粉含量及表面沾污对环氧富Zn漆电化学行为的影响[J]. 金属学报, 2004, 40(1): 103-108)

[16] Han S M, Zheng Y Z, Yu S X, et al. Corrosion prevention characteristics and mechanism of zinc-aluminum-chromium coating [J]. Chin. J. Nonferrous Met., 2002, 12(3): 619-623

     (韩树民, 郑炀曾, 于学升等. 锌铝铬膜的防腐性能与机理[J]. 中国有色金属学报, 2002, 12(3): 619-623)

[17] Li M X. Study and design of sacrificial anodes and cathodic protection system on marine ship [J]. Equip. Manuf. Technol., 2007, (8): 31-34

     (李明昕. 船舶牺牲阳极的阴极保护设计研究[J]. 装备制造技术,2007, (7): 31-34)

[18] Marder A R. The metallurgy of zinc coated steel [J]. Prog. Mater. Sci., 2000, 45(3): 191-271

[19] Chen B K, Yuan X H,Zhang Q F. Coating structure and anti-corrosion mechanism of hot dipped 55%Al-Zn alloy on sheet steel [J]. Corros. Prot., 2009, 30(1): 16-21

     (陈斌瑎, 袁训华, 张启富. 热浸镀55%Al-Zn合金镀层钢板的镀层结构及防腐蚀机理 [J]. 腐蚀与防护, 2009, 30(1): 16-21)

[20] Yang Z B, Yang Z L, Guo W S, et al. Study on the anticorrosion mechanism of flake zinc-rich coatings film [J]. Chin. Coat., 2006, 21(1): 19-21

     (杨振波, 杨忠林, 郭万生等. 鳞片状富锌涂层耐蚀机理的研究[J].中国涂料, 2006, 21(1): 19-21)

[21] Zhang J, Yu Z H, Li Y. Corrosion behavior of hot-dipped Zn-55%Al-Si coated steel wires in seawater [J]. Chin. J. Mater. Res., 2008, 22 (4): 347-352

     (张杰, 于振花, 李焰. Zn-55%A1-Si合金镀层钢丝在海水中的耐蚀性能[J]. 材料研究学报, 2008, 22 (4): 347-352)

[22] Han F J, Zhou Y M, Wang X Z. Preparation of anticorrosive coating with lamellar zinc particles [J]. Corros. Prot., 2006, 27(3): 109-112

     (韩风俊, 周钰明, 汪小舟. 鳞片状锌粉防腐蚀涂料的研制 [J]. 腐蚀与防护. 2006.3, 27(3): 109-112)

[23] He J B, Lu D R, Li X L, et al. Investigation on corrosion kinetics behavior of dacromet coating [J]. Chem. Res. Appl., 2002, 14(1): 81-83

     (何建波, 鲁道荣, 李学良等. 达克罗涂层的腐蚀动力学行为研究[J]. 化学研究与应用. 2002, 14(1): 81-83)
[1] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[2] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[3] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[4] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[5] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[6] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[7] 邱萍, 杨连捷, 宋玉, 杨鸿飞. 添加DMF对TiO2薄膜光生阴极保护性能影响研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[8] 寇杰, 张新策, 崔淦, 杨宝安. 储罐底板阴极保护电位分布研究进展[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
[9] 王晓霖, 闫茂成, 舒韵, 孙成, 柯伟. 破损涂层下管线钢的交流电干扰腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[10] 王廷勇,马兰英,汪相辰,张海兵,陈凯,闫永贵. 某核电站凝汽器在海水中阴极保护参数的研究及应用[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[11] 杨霜,唐囡,闫茂成,赵康文,孙成,许进,于长坤. 温度对X80管线钢酸性红壤腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 227-232.
[12] 刘在健,王佳,张彭辉,王燕华,张源. 5083铝合金在海水中的腐蚀行为及其阴极保护研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 239-244.
[13] 许洪梅, 柳伟, 曹立新, 苏革, 高荣杰. 304不锈钢表面ZnO/TiO2复合薄膜的制备与光生阴极防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
[14] 范丰钦, 宋积文, 李成杰, 杜敏. 海水流速对DH36平台钢阴极保护的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 550-557.
[15] 邱景, 杜敏, 陆原, 张颖, 郭海军, 李成杰. X65碳钢在模拟油田采出水中的阴极保护研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 333-338.