Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (1): 72-77    
  研究报告 本期目录 | 过刊浏览 |
沙漠浮土中可溶性盐对铝的大气腐蚀影响
郑弃非;孙霜青;温军国;李德富
北京有色金属研究总院 北京 100088
EFFECTS OF THE SOLUBLE SALTS IN DESERT DUST ON ATMOSPHERIC CORROSION OF ALUMINIUM
ZHENG Qifei; SUN Shuangqing; WEN Junguo; LI Defu
General Research Institute for Nonferrous Metals; Beijing 100088
全文: PDF(2627 KB)  
摘要: 

通过干湿循环加速试验模拟Al表面沉积沙漠浮土情况下的大气腐蚀过程,利用失重分析、扫描电镜(SEM)和大气腐蚀监测仪(ACM)研究浮土中可溶性盐对Al的大气腐蚀的影响。结果表明:浮土中的可溶性盐会使发生大气腐蚀的相对湿度范围变宽,随着可溶性盐含量的提高,Al的腐蚀不断恶化。在可溶性盐成分中,MgCl2对Al的腐蚀影响最大,NaCl次之, MgSO4和Na2SO4的影响较小。

关键词 大气腐蚀Al模拟加速试验沙漠浮土可溶性    
Abstract

Atmospheric corrosion of aluminium deposited with desert dust was simulated using a laboratory-accelerated test of cyclic wet-dry. Effects of the soluble salts in desert dust on atmospheric corrosion of aluminium were studied through mass loss, scanning electron microscope (SEM) and atmosphere corrosion monitor (ACM). The results demonstrated that the soluble salts in dust can widen the scope of relative humidity in which atmospheric corrosion occurs. Atmospheric corrosion of aluminium was getting more seriously with the increasing of the salt content in desert dust. MgCl2 in desert dust had the strongest influence on atmospheric corrosion of aluminium, then did NaCl, MgSO4 and Na2SO4 had the smaller influence.

Key wordsatmospheric corrosion    aluminium    accelerated test    desert dust    soluble salt
收稿日期: 2008-08-18     
ZTFLH: 

TG172.3

 
基金资助:

国家自然科学基金项目(50499331\_3)和国家科技部基础条件平台建设项目(2005DKA10400-cj-2)资助

通讯作者: 郑弃非     E-mail: zhengqf@grinm.com
Corresponding author: ZHENG Qifei     E-mail: zhengqf@grinm.com
作者简介: 郑弃非, 男,1963年生, 教授, 博士, 研究方向为有色金属的自然环境腐蚀与防护

引用本文:

郑弃非;孙霜青;温军国;李德富. 沙漠浮土中可溶性盐对铝的大气腐蚀影响[J]. 中国腐蚀与防护学报, 2010, 30(1): 72-77.
ZHENG Qi-Fei zhengqifei, XUN Shuang-Jing, YUN Jun-Guo, LI De-Fu. EFFECTS OF THE SOLUBLE SALTS IN DESERT DUST ON ATMOSPHERIC CORROSION OF ALUMINIUM. J Chin Soc Corr Pro, 2010, 30(1): 72-77.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I1/72

[1] Xiao Y Q, Xie S S, Liu J A, et al. Practical Directory of Aluminium Alloys Technology [M]. Beijing: Metallurgical Industry Press, 2005
    (肖亚庆, 谢水生, 刘静安等. 铝加工技术实用手册 [M]. 北京: 冶金工业出版社, 2005)
[2] Fuente D de la, Otero-Huerta E, Morcillo M. Studies of long-term weathering of aluminium in the atmosphere [J]. Corros. Sci., 2007,49(7), 3134-3148
[3] Natesan M, Venkatachari G, Palaniswamy N.Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India [J]. Corros.Sci., 2006, 48(11): 3584-3608
[4] Zhu H, Zheng Q F, Xie S S.Study on atmospheric corrosion of aluminium and its alloy at different distance away from sea shore in Wanning marine environment [J]. Rare Met., 2002, 26(6): 456-459
    (朱红嫚, 郑弃非, 谢水生.万宁地区铝及铝合金不同距海点的大气腐蚀研究 [J]. 稀有金属, 2002,26(6): 456-459)
[5] Wang Z Y, Yu G C, Han W. Atmospheric corrosion law of three nonferrous metals in Shenyang area [J]. Chin. J.Nonferrous. Met., 2003, 13(2):367-372
    (王振尧, 于国才, 韩薇. 3种有色金属在沈阳地区的大气腐蚀规律 [J]. 中国有色金属学报,2003, 13(2):367-372)
[6] Xiao Y D, Wang G Y, Li X G, et al. Corrosion behavior of atmospheric environment and corrosion feature of materials in our western area [J]. J. Chin. Soc. Corros. Prot.,2003, 23(4): 248-255
    (萧以德, 王光雍, 李晓刚等.我国西部地区大气环境腐蚀性及材料腐蚀特征 [J]. 中国腐蚀与防护学报,2003, 23(4): 248-255)
[7] Cao C N. Material Natural Environmental Corrosion of China [M]. Beijing: Chemical Industry Press, 2005: 69-73
    (曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005: 69-73)
[8] Bengtsson Blucher D, Svensson J E, Johansson L G.The influence of CO2, AlCl3.6H2O, MgCl2.6H2O,Na2SO4 and NaCl on the atmospheric corrosion of aluminum [J]. Corros. Sci., 2006, 48(7): 1848-1866
[9] Bengtsson Blucher D, Lindstrom R, Svensson J E, et al. The effect of CO2 on the NaCl-induced atmospheric corrosion of aluminum [J]. J. Electrochem. Soc., 2001, 148(4): B127-B131
[10] Wan Y, Ren Y J, Yan C W. Effect of deposition of ammonium chloride and ammonium sulfate on atmospheric corrosion of LY12 alloy [J]. Chin. J. Nonferrous. Met., 2004, 14(7),1149-1155
     (万晔, 任延杰, 严川伟. 两种盐沉积对LY12铝合金大气腐蚀行为的影响 [J]. 中国有色金属学报,2004, 14(7), 1149-1155
[11] Wang J. Role of salt particle deposition in the initiation and propagation of atmospheric corrosion [J]. J. Chin. Soc. Corros. Prot., 2004, 24(3): 155-158
     (王佳. 无机盐微粒沉积和大气腐蚀的发生与发展 [J]. 中国腐蚀与防护学报,2004, 24(3): 155-158)
[12] Christofer Leygraf, Thomas Graedel. Han E H, et al Trans. Atmospheric Corrosion [M]. Beijing: Chemical Industry Press, 2005: 7-21(Christofer Leygraf, Thomas Graedel著. 韩恩厚等译. 大气腐蚀 [M]. 北京: 化学工业出版社, 2005: 7-21)
[13] Marcus P, Oudar J. Corrosion Mechanism in Theory and Practice [M].Marcel Dekker, Inc., 1995
[14] Elola A S, Otero T F, Porro A.Evolution of the pitting of aluminum exposed to the atmosphere [J].Corrosion, 1992, 48(10): 854-863
[15] Pyun S I, Moon S M, Ahn S H, et al. Effects of Cl-, NO3- and SO4-  ions on anodic dissolution of pure aluminium in alkaline solution [J]. Corros. Sci.,1999, 41: 653-667
[16] Graedel T E. Corrosion mechanisms for aluminium exposed to the atmosphere [J]. J. Electrochem. Soc.,1989, 136: 204-212
[17] Oesch S, Faller M. Environmental effects on materials: the effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminum, a short literature survey and results of laboratory exposures [J]. Corros. Sci.,1997, 39: 1505-l530
[18] Rosa Vera, Diana Delgado, Blanca M Rosales. Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 1. Aluminium and AA6201 alloy [J].Corros. Sci., 2006, 48: 2882-2900
[19] Arshadi M A, Johnson J B, Wood G C. The influence of an isobutene SO2 pollutant system on earlier stages of the atmospheric corrosion of metals [J]. Corros. Sci.,1983, 23: 763-776

[1] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[2] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[3] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[4] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[5] 王海卫, 常森, 栾新刚, 宋雪梅, 王稹, 李彦樟, 陈建利, 张计荣, 韩明, 丘丹圭. 纳米Al2O3改性SiBCN陶瓷高温粘接剂的制备与性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[6] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[7] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[9] 潘成成,马超,夏大海. EBSD技术研究金属材料晶体取向对大气腐蚀萌生的影响机理[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[10] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[11] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[12] 余春堂,阳颖飞,鲍泽斌,朱圣龙. 先进高温热障涂层用高性能粘接层制备及研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
[13] 艾鹏,刘礼祥,李晓罡,姜文涛. TiAlSiN涂层对γ-TiAl基合金抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[14] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[15] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.