Please wait a minute...
中国腐蚀与防护学报  2008, Vol. 28 Issue (5): 291-295     
  论文 本期目录 | 过刊浏览 |
咪唑啉季铵盐对Q235钢在盐酸溶液中的缓蚀性能
燕音;刘瑞泉;王献群;朱丽琴
新疆大学化学化工学院
Synthesis of two Quaternary Ammonium Imidazolines and Study on their Inhibition Action and Adsorption Behaviors on A3 Steel in Hydrochloric Solution
;
全文: PDF(1059 KB)  
摘要: 合成了苯乙酸咪唑啉季铵盐(PAIPI)和萘乙酸咪唑啉季铵盐(NAIPI), 通过失重法、电化学方法研究了两者在1 mol/L HCl中对Q235钢的缓蚀性能,并探讨了其在Q235钢表面的吸附行为。结果表明,两者在1 mol/L HCl中对Q235钢均为阳极型缓蚀剂, 其中NAIPI对Q235钢的缓蚀性能优于PAIPI;两者在Q235钢表面均是单层吸附,属于物理吸附.
关键词 咪唑啉季铵盐缓蚀剂Q235钢铁    
Abstract:Two imidazolinyl intermediates are prepared from phenylacetic acid, α-naphthylacetic acid and diethylenetriamine firstly, and then they react with the solution of sodium chloroacetate into two imidazolinyl quaternary ammonium salts(PAIPI and NAIPI). Their influence on the inhibition of corrosion of A3 steel in 1 mol/L HCl solution is studied by weight loss and electrochemical techniques. The obtained results show that the two compounds are good inhibitors for A3 steel in 1 mol/L HCl . But the inhibition efficiency of NAIPI is better than PAIPI and Two imidazolinyl quaternary ammonium salts are anode-type corrosion inhibitors. The adsorption of two imidazolinyl quaternary ammonium salts on A3 steel is studied from the results of the electrochemical technique, and the experimental results reveal that adsorption of two imidazolinyl quaternary ammonium salts on A3 steel surface is monolayer and belongs to physical absorption.
Key wordsquaternary ammonium imidazoline    inhibitor    A3 steel    1 mol/L HCl
收稿日期: 2007-01-08     
ZTFLH:  O646.6  

引用本文:

燕音; 刘瑞泉; 王献群; 朱丽琴 . 咪唑啉季铵盐对Q235钢在盐酸溶液中的缓蚀性能[J]. 中国腐蚀与防护学报, 2008, 28(5): 291-295 .
. Synthesis of two Quaternary Ammonium Imidazolines and Study on their Inhibition Action and Adsorption Behaviors on A3 Steel in Hydrochloric Solution. J Chin Soc Corr Pro, 2008, 28(5): 291-295 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2008/V28/I5/291

[1]Edwards A,Osborne C,Webster S,et al.Mechanistic studies ofthe corrosion inhibitors oleic imidazoline[J].Corros.Sci.,1994,36(2):315-325
[2]Yang W Z,Huang K Y,Wang Q,et al.Corrosion Inhibitor[M].Beijing:Chemical Industry Press,1989(杨文治,黄魁元,王清等.缓蚀剂[M].北京:化学工业出版社,1989)
[3]Wang D H,Gan F X,Yao L A.Advances and prospects on ad-sorption behaviors of interface corrosion inhibitor[J].Mater.Prot.,2000,33(1):29-32(汪的华,甘复兴,姚禄安.缓蚀剂吸附行为研究进展与展望[J].材料保护,2000,33(1):29-32)
[4]Zhu L Q,Liu R Q,Wang J D,et al.Study of imidazolineson'scorrosion inhibition in acide solution for Q235 steel[J].J.Chin.Soc.Corros.Prot.,2006,26(6):336-341(朱丽琴,刘瑞泉,王吉德等.席夫碱基咪唑啉化合物对Q235钢在盐酸介质中缓蚀性能研究[J].中国腐蚀与防护学报,2006,26(6):336-341)
[5]Dong Z H,Xu L M,Mao Q B.et al.Corros.inhibition of imidazo-lines on carbon steel in acidulous H2S solution[J].Corros.Prot.,1999,20(2):66-68(董泽华,许立铭,毛庆斌等.咪唑啉对碳钢在弱酸性H2S溶液中的缓蚀作用[J].腐蚀与防护,1999,20(2):66-68)
[6]Yu J H,Peng Q.Present situation of imidazoline pickling inhibitors[J].Corros.Prot.,2003,24(11):473-476(于建辉,彭乔.咪唑啉型酸洗缓蚀剂的研究现状[J].腐蚀与防护,2003,24(11):473-476)
[7]Wang B,Peng Q.The research situation of synthesis method of im-idazoliny inhibitor[J].Liaoning Chem.Ind.,2004,33(1):32-35(王斌,彭乔.咪唑啉型缓蚀剂合成方法的研究现状[J].辽宁化工,2004,33(1):32-35)
[8]Zhu L,Yu P,Luo Y B.Research progress in imidazoline as corro-sion inhibitor[J].Mater.Prot.,2003,36(12):4-7(朱镭,于萍,罗运柏.咪唑啉缓蚀剂的研究与应用进展[J].材料保护,2003,36(12):4-7)
[9]Zhou X D,Sun D X,Wang W.Synthesis and application of lauricacid imidazoline ampholytic surfactant[J].Adv.Fine Petrochem.,2003,11(4):38-40(周晓东,孙道兴,王卫.月桂酸咪唑啉两性表面活性剂的合成及应用[J].精细石油化工进展,2003,11(4):38-40)
[10]Cao C N.Corrosion Electrochemistry[M].Beijing:Chemical In-dustry Press,1994:66-128(曹楚南.腐蚀电化学[M].北京:化学工业出版社,1994:66-128)
[11]Liu R Q,Xiang L.Inhibitory effect of methyl red on corrosion ofsteel in acidic solutions[J].Corros.Prot.,2001,22(3):98-99,122(刘瑞泉,向龙.酸性溶液中甲基红对钢的缓蚀作用[J].腐蚀与防护,2001,22(3):98-99,122)
[12]Bentiss F,Bouanis M,Mernari B,et al.Understanding the ad-sorption of 4H-1,2,4-triazole derivatives on mild steel surface inmolar hydrochloric acid[J].Appl.Surf.Sci.,2007,253(7):3696-3704
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[9] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[10] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[11] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[12] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[13] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[14] 周勇, 左禹, 闫福安. 缓蚀性组分对金属小孔腐蚀的缓蚀作用与机制[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
[15] 陈振宁,陈日辉,潘金杰,滕艳娜,雍兴跃. L921A钢在3.5%NaCl溶液中的有机/无机复配缓蚀剂研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.