Please wait a minute...
中国腐蚀与防护学报  2007, Vol. 27 Issue (4): 233-237     
  研究报告 本期目录 | 过刊浏览 |
电化学噪声和电化学阻抗谱监测1Cr18Ni9Ti不锈钢的初期点蚀行为
王梅丰;杜 楠;胡 丽 华
南昌航空工业学院;北京科技大学
MONITORING THE INITIAL PITTING BEHAVIORS OF 1Cr18Ni9Ti STAINLESS STEEL BY ELECTROCHEMICAL NOISE AND ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY
;;
南昌航空工业学院;北京科技大学
全文: PDF(263 KB)  
摘要: 采用电化学噪声和电化学阻抗谱技术,研究1Cr18Ni9Ti不锈钢在3.5% NaCl溶液中的早期腐蚀行为。研究表明,浸泡初期(0 h~48 h),电化学噪声电位、电流在测量时间范围内漂移较小,电位谱功率(PSDV)曲线的斜率几乎不变;电化学阻抗谱在低频下出现感抗特征,表明研究电极表面发生钝化膜破裂与修复的交替过程,即出现了亚稳态蚀点。浸泡中期(48 h~60 h),电化学噪声出现尖峰波动,谱功率曲线的斜率产生突变,电化学阻抗谱的低频感抗特征消失,表明研究电极表面的亚稳态蚀点转化为稳定蚀点。扫描电镜表面形貌分析表明,浸泡60 h后研究电极表面出现明显蚀点。
关键词 1Cr18Ni9Ti不锈钢点蚀电化学噪声电化学    
Abstract:The initial pitting of 1Cr18Ni9Ti stainless steel in 3.5% NaCl solution was studied by electrochemical noise(ECN) and electrochemical impedance spectroscopy(EIS). The results indicated that, the initial immersion stage (to 48 hours), the fluctuation amplitude of potential and current noise were small, the slope of the power spectral density of potential(PSDV)plots changed hardly,and an inductive component was observed on impedance plane, which means the formation of the metastable pitting and continuous reparation of the passive film on the surface of the 1Cr18Ni9Ti stainless steel.When immersed to the stage of 48 hours to 60 hours,noise pulse emerged in the plots of electrochemical noise,the slope of the power spectral density (PSD) plots changed suddenly, on the impedance plane inductive component disappeared, which means the transition from metastable to stable pitting. SEM image showed pitting emerged in the surface after immersion for 60 hours.
Key words1Cr18Ni9Ti stainless stee    pitting corrosion    ECN    EIS    SEM
收稿日期: 2006-02-13     
ZTFLH:  TG174.2  
通讯作者: 王梅丰     E-mail: wmeifeng@sohu.com

引用本文:

王梅丰; 杜楠; 胡丽华 . 电化学噪声和电化学阻抗谱监测1Cr18Ni9Ti不锈钢的初期点蚀行为[J]. 中国腐蚀与防护学报, 2007, 27(4): 233-237 .

链接本文:

https://www.jcscp.org/CN/Y2007/V27/I4/233

[1]Wei B M.Theory and Application of Metal Corrosion Science[M].Beijing:Chemical Industry Press,1984(魏宝明.金属腐蚀学理论及应用[M].北京:化学工业出版社,1984)
[2]Cheng Y F,Wilmott M,Luo J L.Analysis of the role of electrode capacitance on the initiation of pits for A516carbon steel by elec-trochemical noise measurements[J].Corros.Sci.,1999,41(7):1245-1256
[3]Zhang J Q,Zhang Z,Wang J M,et al.Analysis and application of electrochemical noise technologyⅡ.application of electrochemi-cal noise[J].J.Chin.Soc.Corros.Prot.,2002,22(4):241-248(张鉴清,张昭,王建明等.电化学噪声的分析与应用Ⅱ-电化学噪声的应用.中国腐蚀与防护学报[J].2002,22(4):241-248)
[4]Uruchurtu J C,Dawson J L.Noise analysis of pure aluminum under different pitting conditions[J].Corrosion,1987,43(1):19-26
[5]Dong Z H,Guo X P,Zhen J S,et al.Features of ECN of local-ized corrosion for16Mn steel[J].J.Chin.Soc.Corros.Prot.,2002,22(5):290-293(董泽华,郭兴蓬,郑家等.16Mn钢局部腐蚀中的电化学噪声特征.中国腐蚀与防护学报[J].2002,22(5):290-293)
[6]Cao C N.Corrosion Electrochemistry[M].Beijing:Chemical In-dustry Press,2004(曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004)
[7]Mansfled F,Sun Z,Hsu C H.Electrochemical noise analysis(ENA)for active and passive systems in chloride media[J].Electrochim.Acta,2001,46(24/25):3651-3664
[8]Gouveia-caridade C,Pereira M I S,Brett C M A.Electrochemical noise and impedance study of aluminium in weakly acid chloride solution[J].Electrochim.Acta,2004,49(5):785-793
[9]Bertocci U,Gabrielli C,Huet F,et al.Noise resistance applied to corrosion measurements I.theoretical analysis[J].J.Electrochem.Soc.,1997,144(1):31-37
[10]Hashimoto M,Miyajima S,Murata T.An experimental study of potential fluctuation during passive film breakdown and repair on iron[J].Corros.Sci.,1992,33(6):905-915
[11]Mojica J,García E,Rodríguez F J,et al.Evaluation of the pro-tection against corrosion of a thick polyurethane film by electro-chemical noise[J].Org.Coat.,2001,42(3/4):218-225
[12]Lee C C,Mansfeld F.Analysis of data for a passive system in the frequency domain[J].Corros.Sci.,1998,40(6):959-962
[13]Cao C N.Introduction of Electrochemical Impedance Spectroscopy[M].Beijing:Science Press,2002(曹楚南.电化学阻抗谱导论[M].北京:科学出版社,2002)
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[5] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[6] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[7] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[8] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[9] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[10] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[11] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[12] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[13] 贺三, 孙银娟, 张志浩, 成杰, 邱云鹏, 高超洋. 20#钢在含饱和CO2的离子液体醇胺溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[14] 李清, 张德平, 王薇, 吴伟, 卢琳, 艾池. L80油管钢实际腐蚀状况评估及室内电化学和应力腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[15] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.