Please wait a minute...
中国腐蚀与防护学报  1995, Vol. 15 Issue (4): 241-246    
  研究报告 本期目录 | 过刊浏览 |
缓蚀剂阳极脱附现象的研究──Ⅰ.缓蚀剂阳极脱附现象
王佳;曹楚南;陈家坚;张呜镝;叶国栋;林海潮
中国科学院海洋研究所;中国科学院金属腐蚀与防护研究所腐蚀科学开放研究实验室;哈尔滨师范大学化学系
ANODIC DESORPTION OF INHIBITORS──Ⅰ.THE PHENOMENON OF ANODIC DESORPTION OF INHIBITORS
Wang Jia; Cao Chunan; Chen Jiajian;Zhang Mingdi; Ye Guodong;Lin Haichan(Institute of Corrosion and Protection of Metals; Chinese Academy of Sciences State Keg Laboratory for Corrosion and Protection)
全文: PDF(534 KB)  
摘要: 金属在缓蚀剂体系中的阳极极化曲线上存在着电流迅速增加而形成的电位平阶现象。逆向扫描极化时,这个电位平阶消失。这一现象起因于吸附在电极表面的缓蚀剂发生阳极脱附。文中提出用一电化学参数—脱附电位Edes来表征缓蚀剂阳极脱附现象。Edes是缓蚀剂大量脱附时的电位,其物理意义为缓蚀剂在电极表面因阳极极化而引起脱附速度稍大于其吸附速度。缓蚀剂阳极脱附速度取决于外加电位与脱附电位的差值。外加电位越正于脱附电位,缓蚀剂脱附速度越大;反之,缓蚀剂不发生阳极脱附。
关键词 缓蚀剂阳极极化脱附    
Abstract:The behaviour of inhibitor desorption from iron eledrode upon anodic polarization was investigated by polarization measurements. It was found that there was a potednd plateau characterized by a rapid current rise on anodic polarization curve in the presence of inhibitor and the potedial plateau disappeared during sequent reverse potential scanning. This phenomenon was probably caused by the inhibitor desorption from iron surface as it was anodically polarized. An eledrochemical parameter-desorption potential,Edes was defined to describe the performance of inhibitor desorption, corresponding to the potential at which the desorption rate is equal to the adsorption rate for the inhibitor. The inhibitor desorption rate was dependent on the difference between desorption potential and applied potential. The more positive than Edes the applied potential was, the faster the inhibitor desorption would be.AS the applied potential was more negative than Edes, no inhibitor desorption would occur.
Key words Inhibitor    Anodic polarization    Desorption
收稿日期: 1995-08-25     
基金资助:国家自然科学基金

引用本文:

王佳;曹楚南;陈家坚;张呜镝;叶国栋;林海潮. 缓蚀剂阳极脱附现象的研究──Ⅰ.缓蚀剂阳极脱附现象[J]. 中国腐蚀与防护学报, 1995, 15(4): 241-246.
. ANODIC DESORPTION OF INHIBITORS──Ⅰ.THE PHENOMENON OF ANODIC DESORPTION OF INHIBITORS. J Chin Soc Corr Pro, 1995, 15(4): 241-246.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y1995/V15/I4/241

1ChandrasekaraPillaiK,NarnyanR.Corro.Sci.,1983,23(2):1512CarellaraL,FelloniL,IrabanelliG,PulidoriF.Electrochim.Acta,1964,9:4853HeuslerKE,CartledgeGH.J.Electrochem.Soc,1961,108(8):7324DrazicDM,DrazicVJ,JevticV.Electrochim.Acta,1989,34(8):12515王佳,陈家坚等.中国腐蚀与防护学报,1991,11(3):2796WangJia,ChenJiajian,CaoDianzhen,CaoChunan,LiangFeng.Proc.7thAsianPacificControlConference,Beijing:August19-23,1991,743-7447赵鸿雁.硕士学位论文,沈阳,1990:748VetterKJ.ElectrochemicalKinetics,Academ.Press,NewYork,1967,5709王佳.博士学位论文,沈阳,1990:78
[1] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] 王亚婷, 王棵旭, 高鹏翔, 刘冉, 赵地顺, 翟建华, 屈冠伟. 淀粉接枝共聚物对Zn的缓蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] 邵明鲁, 刘德新, 朱彤宇, 廖碧朝. 乌洛托品季铵盐缓蚀剂的合成与复配研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] 吕祥鸿,张晔,闫亚丽,侯娟,李健,王晨. 两种新型曼尼希碱缓蚀剂的性能及吸附行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] 王霞,任帅飞,张代雄,蒋欢,古月. 豆粕提取物在盐酸中对Q235钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] 刘建国,高歌,徐亚洲,李自力,季菀然. 咪唑啉类衍生物缓蚀性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[9] 李亚琼,马景灵,王广欣,朱宇杰,宋永发,张景丽. NaPO3与SDBS缓蚀剂对AZ31镁合金空气电池在NaCl电解液中放电性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[10] 孔佩佩, 陈娜丽, 白德忠, 王跃毅, 卢勇, 冯辉霞. 壳聚糖及其衍生物的制备与缓蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(5): 409-414.
[11] 马景灵, 通帅, 任凤章, 王广欣, 李亚琼, 文九巴. L-半胱氨酸/ZnO缓蚀剂对3102铝合金在碱性溶液中电化学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[12] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[13] 彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基缓蚀剂糠醇缩水甘油醚的缓蚀性能及机理[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[14] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[15] 周勇, 左禹, 闫福安. 缓蚀性组分对金属小孔腐蚀的缓蚀作用与机制[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.