Please wait a minute...
中国腐蚀与防护学报  2026, Vol. 46 Issue (1): 155-164     CSTR: 32134.14.1005.4537.2025.217      DOI: 10.11902/1005.4537.2025.217
  增材制造与腐蚀专题 本期目录 | 过刊浏览 |
钼合金表面Si-ZrB2-Ti-Cr多元涂层的激光熔覆制备及高温抗氧化性能
刘海龙1, 王力1(), 赵卫国1, 韩嘉彧1, 王轻松1, 龙佳怡1, 贺星2, 高黎黎1, 王华3, 胡平1()
1.西安建筑科技大学冶金工程学院 功能材料加工国家地方联合工程中心 西安 710055
2.中国科学院宁波材料技术与工程研究所 海洋关键材料全国重点实验室 宁波 315201
3.西安精科华创材料分析检测有限公司 西安 710599
Preparation and High-temperature Oxidation Resistance of Laser Clad Si-ZrB2-Ti-Cr Multi-component Coatings on Mo-alloy
LIU Hailong1, WANG Li1(), ZHAO Weiguo1, HAN Jiayu1, WANG Qingsong1, LONG Jiayi1, HE Xing2, GAO Lili1, WANG Hua3, HU Ping1()
1.National and Local Joint Engineering Research Center for Functional Materials Processing, School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2.State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials, Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
3.Xi'an Head Accurate Materials Testing Co. Ltd., Xi'an 710599, China
引用本文:

刘海龙, 王力, 赵卫国, 韩嘉彧, 王轻松, 龙佳怡, 贺星, 高黎黎, 王华, 胡平. 钼合金表面Si-ZrB2-Ti-Cr多元涂层的激光熔覆制备及高温抗氧化性能[J]. 中国腐蚀与防护学报, 2026, 46(1): 155-164.
Hailong LIU, Li WANG, Weiguo ZHAO, Jiayu HAN, Qingsong WANG, Jiayi LONG, Xing HE, Lili GAO, Hua WANG, Ping HU. Preparation and High-temperature Oxidation Resistance of Laser Clad Si-ZrB2-Ti-Cr Multi-component Coatings on Mo-alloy[J]. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 155-164.

全文: PDF(23660 KB)   HTML
摘要: 

钼合金具备高熔点、优良的导电导热性能和卓越的高温力学性能,在航空航天、核能核电等行业高温服役环境下应用广泛。然而,钼合金在高温服役环境下极易发生氧化导致构件失效。本文基于激光熔覆工艺,在钼合金表面制备了Si-ZrB2-Ti-Cr多元合金抗氧化涂层,并系统研究了不同激光功率对涂层组织、相组成及高温抗氧化性能的影响。结果表明,当激光功率为2000 W时,涂层以亚稳态Mo5Si3相为主,高温氧化过程中生成的MoO3易挥发,且未完全形成稳定的MoSi2相,抗氧化性能不足。当激光功率为3000 W时,涂层表面形成SiO2、TiO2、ZrO2氧化膜,厚度约900 μm,在1200 ℃氧化温度下表现出最佳抗氧化性能。当激光功率提升至4500 W时,过高的热输入导致基体Mo熔融挥发并混入涂层,氧化过程中Mo生成MoO3挥发,形成多孔结构,从而降低抗氧化性能。本研究为钼合金高温防护涂层的成分设计与工艺优化提供了参考。

关键词 钼合金激光熔覆涂层MoSi2抗氧化    
Abstract

Mo-alloys are widely used in high-temperature environments foraerospace, nuclear energy and nuclear power industries due to their high melting point, excellent electrical and thermal conductivity and outstanding high-temperature mechanical properties. However, Mo-alloys are very susceptible to oxidation and failure in high-temperature service environments. In this study, Si-ZrB2-Ti-Cr multicomponent anti-oxidation coatings were fabricated on Mo-alloys via laser cladding, and the effect of laser power on themicrostructure, phase composition, and high-temperature oxidation resistance of the acquired coatings was systematically investigated. The results show that when the laser power for cladding is 2000 W, the main constituents of the coating is metastable Mo5Si3 phase rather than the stable MoSi2 phase, the metastable Mo5Si3 phase tens to generate MoO3 during high-temperature oxidation process, which is highly volatile,, thus the coating has poor oxidation resistance. When the laser power is 3000 W, the acquired coating is ~900 μm in thickness, which showed the best oxidation resistance at 1200 oC with formation of a dense oxide scale on surface composed of SiO2, TiO2, and ZrO2. As the laser power was increased to 4500 W, the excessive heat input caused too much Mo to be incorporated into the coating from the substrate. During the oxidation process MoO3 was prone to volatilize, making the oxide scale porous and loose, thereby reducing the oxidation resistance. These findings may provide a reference for further R & D of high-temperature protective coatings on Mo-alloys.

Key wordsMo-alloy    laser cladding    coating    MoSi2    oxidation resistance
收稿日期: 2025-07-08      32134.14.1005.4537.2025.217
ZTFLH:  TG174  
基金资助:国家自然科学基金(52404410);国家自然科学基金(52374401);陕西省自然科学基金青年项目(2024JC-YBQN-0367);中国科协青年人才托举计划2023,陕西省三秦英才引进计划青年项目2023及陕西省重点研发计划(2024QCYKXJ-116)
通讯作者: 王力,E-mail:13269528303@163.com,研究方向为金属材料的腐蚀与防护;
胡平,E-mail:huping@xauat.edu.cn,研究方向为难熔金属粉末冶金
作者简介: 刘海龙,2000 年生,硕士研究生,研究方向为钼基合金表面抗氧化涂层制备。在本领域期刊发表学术论文1篇,申请国家发明专利1项。
王力,西安建筑科技大学冶金工程学院,副教授,硕士生导师,北京科技大学材料科学与工程专业博士。聚焦于增材制造金属腐蚀与防护研究。在Corrosion Science、JMST和Additive Manufacturing 等领域知名期刊发表学术论文40余篇,申请国家发明专利15项,参编《增材制造金属的腐蚀行为与机理》专著1 部,获中国腐蚀与防护学会科学技术一等奖2项、中国有色金属工业协会科学技术奖一等奖1 项,陕西省冶金科学技术一等奖1 项。担任Corrosion Communication、《中国腐蚀与防护学报》、《粉末冶金技术》等期刊青年编委。入选第九届中国科协青年人才托举工程、陕西省三秦英才引进计划青年人才,主持国家自然科学基金青年项目、陕西省自然科学基金青年项目、陕西省教育厅自然科学专项项目、西安市科学家+工程师首席科学家、高层次人才引进项目等。
图1  混合粉末的形貌及EDS面扫能谱结果
图2  不同激光功率下涂层的宏观形貌
图3  不同激光功率下涂层截面的微观形貌
图4  激光功率为2000 W时涂层截面的形貌及能谱结果
图5  激光功率为3000 W时涂层截面形貌及能谱结果
图6  激光功率为4500 W时涂层截面形貌及能谱结果
图7  不同激光功率制备的涂层表面XRD图谱
图8  不同激光功率制备的涂层氧化后的宏观形貌
图9  涂层样品经氧化后截面EDS能谱结果
图10  不同功率下涂层的氧化机理图
[1] Wei Y, Yang H L, Tao L Z, et al. Research progress and development of strengthening-toughening methods for molybdenum alloys prepared by powder metallurgy [J]. J. Alloy. Compd., 2025, 1010: 177099
doi: 10.1016/j.jallcom.2024.177099
[2] Wang Y, Wang D Z, Sun A K, et al. The advance on the oxidation resistance coatings of molybdenum and its alloys [J]. Mater. Rep., 2012, 26(1): 137
[2] 汪 异, 王德志, 孙翱魁 等. 钼及其合金氧化防护涂层的研究进展 [J]. 材料导报, 2012, 26(1): 137
[3] Zhou H D, Zhang Y L, Xia C L, et al. Oxidation behavior of molybdenum alloy coatings at 1200 oC [J]. Powder Metall. Technol., 2025, 43: 123
[3] 周红灯, 张玉玲, 夏春林 等. 钼合金涂层在1200 ℃下的氧化行为 [J]. 粉末冶金技术, 2025, 43: 123
[4] Zhang Y Y, Li Y G, Bai C G. Microstructure and oxidation behavior of Si-MoSi2 functionally graded coating on Mo substrate [J]. Ceram. Int., 2017, 43: 6250
doi: 10.1016/j.ceramint.2017.02.024
[5] Li F J, Chen M H, Zhang Z M, et al. Preparation and thermal shock behavior of a metal-enamel high-temperature protective coating [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 411
[5] 李烽杰, 陈明辉, 张哲铭 等. 金属搪瓷高温防护涂层的制备及其抗热震行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 411
doi: 10.11902/1005.4537.2019.137
[6] Cui C P, Li Q, Fan M Y, et al. Development status and prospects of molybdenum alloys [J]. Chem. Enterp. Manage., 2024, (14): 54
[6] 崔超鹏, 李 强, 范梦宇 等. 钼合金的发展现状及展望 [J]. 化工管理, 2024, (14): 54
[7] Guo M, Luan C H, Qu J F, et al. Research progress of high-strength molybdenum alloys and their composite materials [J]. Mater. Rep., 2023, 37(): 348
[7] 郭 敏, 栾承华, 曲俊峰 等. 高强钼合金及其复合材料的研究进展 [J]. 材料导报, 2023, 37(): 348
[8] Cai Z Y, Liu S N, Xiao L R, et al. Oxidation behavior and microstructural evolution of a slurry sintered Si-Mo coating on Mo alloy at 1650 oC [J]. Surf. Coat. Technol., 2017, 324: 182
doi: 10.1016/j.surfcoat.2017.05.054
[9] Wang X J, Yang J Z, Hu B L, et al. Investigation on the recrystallization and mechanical properties of a novel TZM alloy with heat treatment [J]. Mater. Lett., 2024, 361: 136092
doi: 10.1016/j.matlet.2024.136092
[10] Yue G, Li N, Luo Y C, et al. Research progress on the interface diffusion induced degradation and anti-diffusion technology of silicide coatings on refractory alloys [J]. China Tungsten Ind., 2024, 39(3): 10
[10] 岳 高, 李 宁, 骆玉城 等. 难熔合金硅化物涂层界面扩散致退化与阻扩散技术研究进展 [J]. 中国钨业, 2024, 39(3): 10
[11] Zhao G, Liu J, Zhou X J, et al. Study on preparation and performance of composite silicide coating on Nb-W alloy for space engine [J]. Rare Met. Cemented Carbides, 2023, 51(5): 44
[11] 赵 刚, 刘 尖, 周小军 等. 航天发动机用铌钨合金复合硅化物涂层制备及性能研究 [J]. 稀有金属与硬质合金, 2023, 51(5): 44
[12] Zhai R X, Song P, Huang T H, et al. Microstructure and oxidation behaviour of MoSi2 coating combined MoB diffusion barrier layer on Mo substrate at 1300 oC [J]. Ceram. Int., 2021, 47: 10137
doi: 10.1016/j.ceramint.2020.12.162
[13] Li T T. Preparation and research of high temperature oxidation resistance coating on molybdenum alloy [D]. Xi'an: Xi'an University of Technology, 2021
[13] 李婷婷. 钼合金表面高温抗氧化涂层的制备与研究 [D]. 西安: 西安理工大学, 2021
[14] Tian X D, Guo X P, Sun Z P, et al. Oxidation resistance comparison of MoSi2 and B-modified MoSi2 coatings on pure Mo prepared through pack cementation [J]. Mater. Corros., 2015, 66: 681
[15] Long J Y, Wang L, Zhao W G, et al. Effect of PVB addition on microstructure and oxidation resistance of silicide coatings on TZM Mo-alloy by slurry method [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1717
[15] 龙佳怡, 王 力, 赵卫国 等. 料浆法聚乙烯醇缩丁醛添加量对钼合金硅化物涂层微观结构及抗氧化性能的影响 [J]. 中国腐蚀与防护学报, 2025, 45: 1717
doi: 10.11902/1005.4537.2025.054
[16] Wang Y. Preparation and properties of Mo-based alloys oxidation resistance coatings at elevated temperature [D]. Changsha: Central South University, 2014
[16] 汪 异. 钼基合金高温抗氧化涂层的制备及其性能研究 [D]. 长沙: 中南大学, 2014
[17] Zhao W G, Wang L, Hu P, et al. Enhancing the oxidation resistance of TZM alloy by laser-clading MoSi2-TiVAlZrNb composite coating [J]. Surf. Coat. Technol., 2024, 478: 130471
doi: 10.1016/j.surfcoat.2024.130471
[18] Wang Y, Wang D Z, Yan J H, et al. Preparation and characterization of molybdenum disilicide coating on molybdenum substrate by air plasma spraying [J]. Appl. Surf. Sci., 2013, 284: 881
doi: 10.1016/j.apsusc.2013.08.029
[19] Zhang W, Shang X H, Hu M L, et al. Effect of laser power on microstructure and wear resistance of laser cladding Stellite 6 alloy coatings [J]. Powder Metall. Technol., 2025, 43: 170
[19] 张 维, 尚宪和, 胡明磊 等. 激光功率对激光熔覆Stellite 6合金涂层微观组织及耐磨性能的影响 [J]. 粉末冶金技术, 2025, 43: 170
[20] Hu K K, Tian Y X, Jiang X Z, et al. Microstructure regulation and performance of titanium alloy coating with Ni interlayer on the surface of mild steel by laser cladding [J]. Surf. Coat. Technol., 2024, 487: 130939
doi: 10.1016/j.surfcoat.2024.130939
[21] Li M K, Huang K P, Yi X M. Crack formation mechanisms and control methods of laser cladding coatings: A review [J]. Coatings, 2023, 13: 1117
doi: 10.3390/coatings13061117
[22] Syrtanov M S, Kashkarov E B, Abdulmenova A V, et al. High-temperature oxidation of Zr-1Nb zirconium alloy with protective Cr/Mo coating [J]. Surf. Coat. Technol., 2022, 439: 128459
doi: 10.1016/j.surfcoat.2022.128459
[23] Yan J H, Lin Y Z, Wang Y, et al. Refractory WMoNbVTa high-entropy alloy as a diffusion barrier between a molybdenum substrate and MoSi2 ceramic coating [J]. Ceram. Int., 2022, 48: 11410
doi: 10.1016/j.ceramint.2021.12.364
[24] Deng L. Study on the organization and properties of anti-temperature oxidation coating by laser cladding on molybdenum surface [D]. Chongqing: Chongqing University of Technology, 2024
[24] 邓 浪. 钼表面激光熔覆抗高温氧化涂层组织及性能研究 [D]. 重庆: 重庆理工大学, 2024
[25] Cui H X. Design, preparation and tribological properties of laser cladding Cu-Mo coating [D]. Lanzhou: Lanzhou University of Technology, 2024
[25] 崔鸿勋. 激光熔覆Cu-Mo涂层的设计制备及摩擦学性能研究 [D]. 兰州: 兰州理工大学, 2024
[26] Yuan X H, Li D J, Wang T J, et al. Oxidation behavior of three different Ni-Cr coatings in 630 oC/25 MPa supercritical water [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 119
[26] 袁小虎, 李定骏, 王天剑 等. 超临界水环境中三种Ni-Cr涂层氧化特性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 119
[27] Iizuka T, Kita H. Oxidation behavior and effect of oxidation on mechanical properties of Mo5Si3 particle-reinforced Si3N4 composites [J]. Mater. Sci. Eng., 2004, 374A: 115
[28] Wang D Z, Liu X Y, Zuo T Y. Low temperature oxidation behavior of MoSi2-Mo5Si3 composites [J]. Rare Met. Mater. Eng., 2002, 31: 48
[28] 王德志, 刘心宇, 左铁镛. MoSi2-Mo5Si3复合材料的低温氧化行为 [J]. 稀有金属材料与工程, 2002, 31: 48
[29] Zhang H X, Chen L, Chen H. Study on preparation and oxidation properties of Mo5Si3-Al2O3 composites [J]. Powder Metall. Ind., 2016, 26(3): 55
[29] 张红霞, 陈 莉, 陈 辉. Mo5Si3-Al2O3复合材料的制备及抗氧化性能研究 [J]. 粉末冶金工业, 2016, 26(3): 55
[30] Alam M Z, Venkataraman B, Sarma B, et al. MoSi2 coating on Mo substrate for short-term oxidation protection in air [J]. J. Alloy. Compd., 2009, 487: 335
doi: 10.1016/j.jallcom.2009.07.141
[31] Majumdar S. Formation of MoSi2 and Al doped MoSi2 coatings on molybdenum base TZM (Mo-0.5Ti-0.1Zr-0.02C) alloy [J]. Surf. Coat. Technol., 2012, 206: 3393
doi: 10.1016/j.surfcoat.2012.01.062
[32] Yu C, Liu Z, Qin Y, et al. Preparation and structural properties of MoSi2 coatings on molybdenum-rhenium alloys [J]. J. Inner Mongolia Univ. Sci. Technol., 2024, 43: 200
[32] 喻 冲, 刘 喆, 秦 媛 等. 钼铼合金表面MoSi2涂层制备及其结构性能 [J]. 内蒙古科技大学学报, 2024, 43: 200
[33] Liang Z F, Liang Z Z, Zhang J L, et al. Research on wear resistance of MoSi2 particle reinforced Co based coatings by laser cladding [J]. Mater. Prot., 2024, 57(3): 88
[33] 梁泽芬, 梁泽忠, 张继林 等. 激光熔覆MoSi2颗粒增强Co基涂层的耐磨性能研究 [J]. 材料保护, 2024, 57(3): 88
[34] Lu J, Weng Y T, Wan A H, et al. Unveiling the effect of Si on the microstructure and properties of AlFeCoCrNi high entropy alloy coating [J]. J. Therm. Spray Technol., 2023, 32: 2250
doi: 10.1007/s11666-023-01629-8
[35] Zhang Z Y, Park Y, Kim D H, et al. High-temperature oxidation performance of novel environmental barrier coating 50HfO2-50SiO2/Y x Yb(2- x)Si2O7 at 1475 oC [J]. J. Eur. Ceram. Soc., 2023, 43: 1127
doi: 10.1016/j.jeurceramsoc.2022.10.082
[1] 胡红钰, 王跃飞, 严海心, 史建军, 吴多利. 激光熔覆液压支架立柱防腐耐磨涂层研究进展[J]. 中国腐蚀与防护学报, 2026, 46(1): 25-36.
[2] 丁昊, 杜凌霄, 舒琴, 曹甫洋, 谢云, 彭晓. WC含量对激光熔覆AlCoCrFeNi2.1 共晶高熵合金涂层磨损和腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2026, 46(1): 126-136.
[3] 纪云瀚, 王勤英, 郑杰, 李怡璇, 西宇辰, 董立谨, 张杨飞, 白树林. 无磁钻铤不锈钢激光熔覆层的微观组织与腐蚀磨损特性[J]. 中国腐蚀与防护学报, 2026, 46(1): 175-185.
[4] 谭敬莎, 郭艺超, 陈俊霖, 盖文峰, 孟国哲. ZnAlCe-NO2 水滑石@硅烷涂层的氯离子捕获和响应缓蚀行为[J]. 中国腐蚀与防护学报, 2026, 46(1): 207-219.
[5] 杨潇文, 陈泽浩, 杨莎莎, 王群昌, 王金龙, 陈明辉, 王福会. 镍基单晶高温合金N5及其纳米晶涂层的短期热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 252-260.
[6] 于宝义, 梅桐, 郑黎, 常东旭, 吉梅琳. 冷喷涂制备TC4-WC涂层的组织及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2026, 46(1): 291-298.
[7] 刘建阳, 韩扬, 于美燕, 王巍. 光响应多功能自修复涂层的研究进展[J]. 中国腐蚀与防护学报, 2025, 45(6): 1493-1507.
[8] 王得, 张璠, 王兴奇, 张贺新, 赵成志, 杨延格. 单组分氟碳改性环氧涂层对碳钢和铝合金长期防腐性能的对比研究[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
[9] 龙佳怡, 王力, 赵卫国, 韩嘉彧, 王轻松, 刘海龙, 高黎黎, 胡平, 冯鹏发. 料浆法聚乙烯醇缩丁醛添加量对钼合金硅化物涂层微观结构及抗氧化性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(6): 1717-1724.
[10] 郭玉杰, 李艳辉, 夏大海, 胡文彬. 腐蚀电化学阻抗谱的数据解析与物理模型研究进展[J]. 中国腐蚀与防护学报, 2025, 45(5): 1143-1160.
[11] 李婕, 孟凡帝, 孙学思, 李佳妮, 陈思涵, 李则蓝, 迟剑宁, 亓海霞, 王福会, 刘莉. 基于多尺度图像特征融合的有机涂层寿命预测研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1205-1218.
[12] 李琰琰, 李帅, 董超, 李冬强, 鲍泽斌, 朱圣龙. 大气等离子热障涂层体系在900 ℃含水蒸气和NaCl环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1233-1243.
[13] 耿浩钧, 谢芳坤, 杨凌旭, 王艳丽, 刘会军, 曾潮流. (La0.2Nd0.2Tm0.2Yb0.2Lu0.2)2Zr2O7 高熵陶瓷的制备及其在熔融氧化物膜CaO-MgO-Al2O3-SiO2 下的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1244-1252.
[14] 孙方红, 任延杰, 宋文卿. 42CrMo钢表面激光熔覆涂层的研究现状及进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 849-858.
[15] 郑子龙, 孙海静, 薛伟海, 陈国亮, 周欣, 王进军, 段德莉, 孙杰. 聚四氟乙烯对风电叶片聚氨酯涂层耐磨与耐雨蚀性能影响及损伤机制研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 881-893.