中国腐蚀与防护学报, 2025, 45(5): 1371-1380 DOI: 10.11902/1005.4537.2024.361

研究报告

盐碱地环境下铁尾矿基地聚物中钢筋锈蚀行为

刘硕1,2, 吴立朋,1,2, 李京伦1,2, 邢金正1,2, 李赛1,2

1 石家庄铁道大学 道路与铁道工程安全保障省部共建教育部重点实验室 石家庄 050043

2 石家庄铁道大学土木工程学院 石家庄 050043

Corrosion Behavior of Steel Rebar in Iron Tailings-based Geopolymers in Saline-Alkali Environment

LIU Shuo1,2, WU Lipeng,1,2, LI Jinglun1,2, XING Jinzheng1,2, LI Sai1,2

1 Key Laboratory of Roads and Railway Engineering Safety Control of Ministry of Education, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

2 School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

通讯作者: 吴立朋,E-mail:lipengwu@outlook.com,研究方向为土木工程材料的腐蚀行为及其耐久性

收稿日期: 2024-11-01   修回日期: 2025-02-25  

基金资助: 中央引导地方科技发展资金项目.  236Z3810G
河北省自然科学基金.  E2021210136

Corresponding authors: WU Lipeng, E-mail:lipengwu@outlook.com

Received: 2024-11-01   Revised: 2025-02-25  

Fund supported: Central Government-Guided Local Science and Technology Development Funding Project.  236Z3810G
Hebei Provincial Natural Science Foundation.  E2021210136

作者简介 About authors

刘硕,男,1999年生,硕士生

摘要

研究了盐碱地环境下不同配合比铁尾矿基地聚物中钢筋的锈蚀行为。通过模拟盐碱地环境对铁尾矿基地聚物-钢筋试块进行电加速锈蚀试验,利用电化学阻抗谱、腐蚀电位和极化曲线3种测试方法,研究不同配合比对试块的电化学参数和钢筋锈蚀速率的影响。结果表明:在电加速锈蚀的整个过程中,试块电阻呈现先上升后下降的趋势,表明SO42-及Cl-在腐蚀前期可以增加试块的密实度;在相同溶液浓度和电加速条件下,合理配合比有利于对钢筋的保护,延缓钢筋的锈蚀进程,陶瓷粉掺量对钢筋锈蚀规律的影响尤为明显。通过试块的阻抗(Rc)值、腐蚀电流密度(Icorr)值和腐蚀电位的变化规律表明陶瓷粉掺量较低、水玻璃模数较高、碱掺量较低、水胶比适中的配合比试块对钢筋的保护效果更好。

关键词: 盐碱地环境 ; 地聚物 ; 钢筋锈蚀 ; 电化学

Abstract

The corrosion behavior of HPB235 hot rolled round steel rebar buried in iron tailings-based geopolymers in a simulated saline-alkali environment was investigated via electrochemical impedance spectroscopy, corrosion potential and polarization curve methods, so that to clarify the influence of the formular of geopolymers on the electrochemical parameters of the test blocks and the corrosion rate of steel bar. The results show that during the corrosion process by applied electric current, the resistance of the test block increases first and then decreases, indicating that SO42- and Cl- can increase the compactness of the test block. In conditions with setting solution concentration and applied electric current, the test block with reasonable formular is conducive to the protection and delays the corrosion process of steel bars. The influence of ceramic powder content on the corrosion of steel bars is particularly obvious. By comparing the evolution of the free corrosion potential, corrosion current density Icorr and impedance Rc of the steel bar with test geopolymers block of different formulars, it is found that the test block with low ceramic powder content, high sodium silicate modulus, low alkali content and moderate water binder has better protection effect for the steel bar.

Keywords: saline-alkali environment ; geopolymers ; rusting of steel bars ; electrochemistry

PDF (1410KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘硕, 吴立朋, 李京伦, 邢金正, 李赛. 盐碱地环境下铁尾矿基地聚物中钢筋锈蚀行为. 中国腐蚀与防护学报[J], 2025, 45(5): 1371-1380 DOI:10.11902/1005.4537.2024.361

LIU Shuo, WU Lipeng, LI Jinglun, XING Jinzheng, LI Sai. Corrosion Behavior of Steel Rebar in Iron Tailings-based Geopolymers in Saline-Alkali Environment. Journal of Chinese Society for Corrosion and Protection[J], 2025, 45(5): 1371-1380 DOI:10.11902/1005.4537.2024.361

我国华北、西北和东北地区分布有大量盐碱地,这些地区的建筑大多面临氯盐、镁盐及硫酸盐等多重环境因素的耦合侵蚀影响,导致此地区建筑服役寿命缩短[1]。以矿渣和粉煤灰为胶凝组分的传统地聚物材料在抗Cl-渗透性[2]和抗硫酸盐侵蚀性[3]等方面均优于硅酸盐水泥混凝土材料。Wang等[4]对高钙、低钙、无钙3种类型地聚物与普通硅酸盐混凝土在硫酸盐腐蚀、酸腐蚀、氯化物侵蚀下的耐久性研究表明,3种类型地聚物比普通硅酸盐混凝土具有更好的耐久性。Saptamongkol等[5]研究表明,以高钙粉煤灰与玻璃棉废料为原材料制备的地聚物在抗H2SO4及MgSO4侵蚀方面也有较好的表现。盐碱地中的SO42-和Mg2+主要侵蚀地聚物浆体,使其产生膨胀性产物胀裂地聚物;盐碱地中Cl-经地聚物到达钢筋表面,使钢筋表面钝化膜发生破坏,加速钢筋锈蚀。因此盐碱地环境下是否可以使用地聚物混凝土替代传统混凝土有待进一步研究。

我国尾矿每年年产量约10亿吨,综合利用率仅仅约为32.5%[6],铁尾矿(Iron tailings,IT)的综合利用率仅为7%左右,相较于发达国家60%的利用率相差巨大[7]。铁尾矿大量堆积不仅占用大量土地,对土壤、水和大气造成污染,而且还会造成资源浪费。将铁尾矿应用到建筑材料中具有一定的经济价值和环保效益。相对于矿渣和粉煤灰的资源化利用,铁尾矿在地聚物中的应用研究并不充分。为了明确盐碱地环境下,钢筋在铁尾矿基地聚物中的锈蚀规律以及铁尾矿基地聚物对钢筋的保护效果,本文通过配置模拟盐碱地环境的溶液,利用恒电流加速锈蚀[8]的方法,通过控制铁尾矿掺量、水胶比、碱激发剂的模数和碱掺量,设计正交试验来研究不同配合比铁尾矿基地聚物中钢筋在盐碱地环境下的锈蚀行为,并分析各因素对铁尾矿基地聚物-钢筋试块的电化学参数的影响规律,得到抗锈蚀性能最好的配合比。

1 实验方法

1.1 原材料

铁尾矿砂取自石家庄市平山县,在使用之前进行过筛及水洗处理,粒径介于0.2~2 mm之间。铁尾矿粉由铁尾矿砂机械研磨而成,粒径不大于47 μm,如图1所示。

图1

图1   铁尾矿粉粒径分布

Fig.1   Particle size distribution of iron tailings powders


铁尾矿的硅铝比高,不易形成性能良好的地聚物;当尾矿中SiO2含量过大时,可通过添加少量其它原材料用于适量补充铝质来源制备地聚物[9]。陶瓷粉中Al2O3含量较高,加入磨细陶瓷粉后可以制备出具有较好力学性能的地聚物。铁尾矿粉和陶瓷粉的化学成分如表1所示。无水MgSO4、NaCl、MgCl2·6H2O和固体NaOH均为分析纯,液体Na2SiO3固含量为35.5%,模数为3.26。

表1   铁尾矿及陶瓷粉化学成分

Table 1  Chemical compositions of iron tailings and ceramic powders (mass fraction / %)

MaterialSiO2Al2O3CaOFe2O3K2OMgONa2OK2OP2O5
IT61.538.906.0513.311.845.821..211.850.68
Ceramics66.6319.013.570.941.840.851.0100

新窗口打开| 下载CSV


1.2 试块制备

选定陶瓷粉掺量、水胶比、水玻璃模数和碱掺量4种因素,通过正交试验设计出9种铁尾矿基地聚物配合比,如表2所示,其中陶瓷粉掺量为30%、40%、50%;水胶比为0.5、0.55、0.6;碱激发剂模数为1.0、1.2、1.4;碱掺量为10%、12%、14%。

表2   铁尾矿基地聚物正交试验配合比

Table 2  Mix proportions of iron tailings-based geopolymers in orthogonal tests (kg/m3)

SampleWater glassNaOHWaterIT sandCeramic powderIT powder
A231.6457.83173.461291.37193.71451.98
B323.6161.39135.821252.78187.91438.47
C426.9462.7188.951214.26182.14424.99
D380.4355.8870.241262.31252.46378.69
E312.7978.09140.811245.54249.12373.66
F269.4651.12201.761251.77250.35375.53
G377.8571.6869.771253.79313.44313.44
H317.0646.57142.701262.44315.61315.61
I267.6566.82200.421243.41310.85310.85

新窗口打开| 下载CSV


根据表2配合比,制备尺寸为70.7 mm × 70.7 mm × 70.7 mm的立方体试块用于加速锈蚀测试,每组配合比浇筑两个试块,共计18个试块。钢筋置于试块正中间。

所用钢筋为HPB235热轧光圆钢筋,钢筋底面使用环氧树脂密封,上端预留40 mm钢筋与导线连接,使用环氧树脂将钢筋裸露部分全部密封处理,控制钢筋在每个试块内部的暴露长度均为50 mm。每个配比制备尺寸为40 mm × 40 mm × 40 mm的3个试块,用于强度测试。试块浇筑后置于高温养护箱养护24 h后拆模,之后重新放入高温养护箱养护14 d,养护温度60 ℃,相对湿度大于95%。

1.3 腐蚀实验

根据黄骅沟渠水质检测结果配置腐蚀溶液。黄骅市浅层地下水水质测试结果为:SO42- 2306 mg/L,Cl- 19759 mg/L,Mg2+ 1605 mg/L,因此所配置溶液需加入MgSO4 2.88 g/L、NaCl 27.57 g/L、MgCl2·6H2O 8.5 g/L,将配置好的溶液作为腐蚀溶液来模拟盐碱地环境。

因氧气供给不足,全浸泡法会使最终锈蚀产物受到影响,且全浸泡法得到的锈蚀不均匀性较差,胀裂开展速率较低[10],因此采用半浸泡方式[11],实验装置如图2所示。

图2

图2   半浸泡式腐蚀试验装置示意图

Fig.2   Schematic diagram of semi-immersion corrosion testing device


钢筋与直流电源正极连接,不锈钢板与电源的负极相连。为使实验结果更加接近真实腐蚀过程,设置的电流密度需≤ 3 mA/cm2[12],因此设置恒定电流密度为0.5 mA/cm2。后续由于极化作用的加强,系统阻抗不断上升[13],并且试块保护层电阻上升会引起直流稳压电源的输出电压不断上升,为防止电源两端电压过高发生危险,在电加速48 h之后将电流密度降低为0.1 mA/cm2。为保证腐蚀溶液浓度及液面高度稳定,每3 d更换一次腐蚀溶液;为保证腐蚀溶液中各离子分布均匀,每6 h对溶液进行一次搅拌。

1.4 电化学测试

利用Zahner Zennium Pro电化学工作站测试电化学阻抗谱(EIS),采用三电极体系,其中铁尾矿基地聚物-钢筋试块为工作电极,不锈钢板为辅助电极,饱和甘汞(SCE)电极为参比电极。每通电24 h后中止通电对试块进行EIS谱、腐蚀电位和极化曲线测试。在EIS测试中扰动电压为10 mV的正弦波[14],频率范围为0.5~5 × 106 Hz。

极化曲线数据使用Zahner Analysis软件中的Butler-Volmer公式进行拟合,得到钢筋的腐蚀电流密度Icorr。由Stern-Geary公式Icorr = B/Rp确定极化电阻Rp,其中B为Stern-Geary系数,钢筋处于钝化状态时取52 mV,钢筋处于腐蚀状态时取26 mV[15]

1.5 性能表征

抗压强度实验采用微机控制电液伺服压力试验机,将尺寸为40 mm × 40 mm × 40 mm的不同配合比铁尾矿基地聚物试块养护14 d后从养护箱中取出,放入抗压夹具中(夹具横截面尺寸为40 mm × 40 mm),抗压夹具中心与压力试验机板的中心对齐,开启油泵使夹具与试块上表面留有适当缝隙。荷载速率设置为500 N/s,直至试块破坏,记录峰值荷载为F,计算抗压强度,精确至0.1 MPa。微观形貌观测采用SU8010型扫描电镜(SEM),首先将养护至14 d龄期的铁尾矿基地聚物试块破碎,取芯部少量块状试样放入异丙醇溶液中浸泡5~7 d终止水化,之后将已停止水化且干燥后的试样压碎,均匀分散在导电胶上并进行喷金处理,放于载物台观察微观形貌并进行能谱测试。将14 d龄期的铁尾矿基地聚物破碎,取芯部块体储存在低湿度、低真空的干燥容器中,研磨至粒径≤ 5 μm,采用D8 Advance型X射线衍射仪(XRD)进行物相分析测试。

2 结果与分析

2.1 力学性能及微观形貌分析

图3为配合比对铁尾矿基地聚物抗压强度的影响。可见对试块抗压强度影响最大的因素为陶瓷粉掺量的变化,随着陶瓷粉掺量的增加,试块的抗压强度变大(图3a)。水胶比越大,试块的抗压强度越低,水胶比的变化对试块抗压强度的影响最小(图3b)。随着碱掺量的提高,试块的抗压强度降低,并且碱掺量由10%提高到12%时,抗压强度降低明显(图3c)。水玻璃模数越高,试块的抗压强度越高(图3d)。

图3

图3   不同陶瓷粉掺量、水胶比、碱掺量及模数试块的抗压强度

Fig.3   Compressive strengths of test blocks with different ceramic powder contents (a), water-binder ratios (b), alkali con-tents (c) and moduli (d)


图4为铁尾矿基地聚物14 d龄期的微观形貌SEM图,并选取50个点进行EDS测试,典型测试点的能谱见图5所示。

图4

图4   铁尾矿基地聚物SEM形貌

Fig.4   SEM image of iron tailings-based geopolymers


图5

图5   典型测试点的EDS分析结果

Fig.5   EDS results of typical regions marked as spot 30 (a) and spot 32 (b) in Fig.4


根据50个关注点的能谱图中Ca、Al和Si含量,以氧化物的形式重新归一化为1,绘制CaO-SiO2-Al2O3三元相图(图6)。参照文献[16]的方法,进一步确定凝胶的类型为N-A-S-H及C-A-S-H凝胶。这些凝胶共同填充在未反应的铁尾矿与陶瓷颗粒之间,形成致密坚硬的微观结构。图7是盐碱侵蚀前后地聚物的XRD图谱。

图6

图6   CaO-SiO2-Al2O3三元相图

Fig.6   CaO-SiO2-Al2O3 ternary diagram


图7可知,经过硫酸盐的侵蚀,试块内部有石膏生成,并且试块表面出现白色附着物,随着浸泡时间的延长,白色附着物(石膏)增多。

图7

图7   铁尾矿基地聚物盐碱侵蚀前后XRD图谱

Fig.7   XRD patterns of iron tailings-based geopolymers before and after corrosion in saline-alkali simulated solution


2.2 EIS

图8为不同陶瓷粉掺量的试块在不同腐蚀时间下的Nyquist图,可见高频区容抗弧半径均随腐蚀时间的增加先变大后变小。随腐蚀时间的增加,低频区半圆弧会变得更加完整,这一特征表明铁尾矿基地聚物中钢筋的锈蚀程度正在加剧。

图8

图8   陶瓷粉掺量30%、40%及50%试块在不同电加速腐蚀时间下的Nyquist曲线

Fig.8   Nyquist curves of test blocks with the ceramic powder contents of 30% (a), 40% (b) and 50% (c) after electrolytic accelerated corrosion for different time


高频区容抗弧半径发生变大和变小的现象,其主要原因可能为SO42-进入试块内部与Ca2+、N-A-S-H凝胶和C-(A)-S-H凝胶等物质发生反应,生成石膏、钙矾石等膨胀性产物[17];少量NaCl会与地聚物发生反应生成方钠石[18],二者共同堵塞了试块内部的部分孔隙;钢筋表面钝化膜发生破坏开始生成少量的铁锈。三者的共同作用使得高频区容抗弧半径随腐蚀时间延长而变大,但随着膨胀产物的不断产出,试块内部出现细微裂缝,此时高频区的电容抗弧半径开始变小。

根据试块的腐蚀特征及测得的阻抗谱曲线,使用图9所示的等效电路图来分析铁尾矿基地聚物-钢筋的锈蚀过程。该等效电路包含:腐蚀溶液电阻Rs、地聚物保护层电阻Rc和钢筋表面电荷转移电阻Rct,以及分别与RcRct并联的地聚物动力学效应参数CPE1和钢筋界面动力学效应参数CPE2[19]。电化学阻抗谱的数据使用Zview软件进行拟合,得到铁尾矿基地聚物的Rc、钢筋表面Rct等。Rc可以反映铁尾矿基地聚物保护层的密实程度,Rct可以表征钢筋表面钝化膜的稳定性。腐蚀电位法可以测得钢筋的自腐蚀电位,以反映铁尾矿基地聚物中钢筋发生腐蚀的难易程度。

图9

图9   试块在不同电加速腐蚀时间下阻抗谱的等效电路图

Fig.9   Equivalent circuit diagram of EIS of test blocks after electrolytic accelerated corrosion for different time


基于试块的Nyquist曲线,利用Zview软件拟合分析得到不同电加速历程下,各配合比的铁尾矿基地聚物的Rc值,如图10所示。由图10a可见,在未通电锈蚀之前,试块的Rc值随陶瓷粉掺量的增加有明显上升的趋势。这表明陶瓷粉掺量越高,试块密实度越高,和试块抗压强度规律相吻合。但试块在电加速腐蚀后,陶瓷粉掺量最低试块的Rc值变化速率快,可能是由于陶瓷粉掺量30%的试块抗压强度低,密实度低,SO42-以及NaCl能更容易的进入试块内部,生成的石膏、方钠石等膨胀产物堵塞了试块内部的部分孔隙,试块密实度得到提高,使得初始电阻最低的试块Rc值提高的最大。在后续的电加速锈蚀过程中,试块Rc值一直保持最高,且由于试块强度低,内部更加松散,对石膏、铁锈等膨胀产物吸收性更好,不出现微观开裂和宏观裂缝,使得陶瓷粉掺量低的试块在整个电加速锈蚀过程中表现的最为优异。

图10

图10   具有不同陶瓷粉掺量、水胶比、模数及碱掺量的试块的Rc

Fig.10   Rc values of test blocks with different ceramic powder contents (a), water-binder ratios (b), moduli (c) and alkali contents (d)


图10b可知,水胶比对试块的初始电阻影响不大,但随电加速时间的延长,水胶比最低的试块电阻最先发生下降,而另外两组试块电阻都是在48 h之后才开始下降。由图10c所示,在腐蚀之后,试块的电阻均随水玻璃模数的增加而增加,并且水玻璃模数1.0的试块电阻最先下降。由图10d所示,在未通电之前,不同碱掺量的试块电阻差距不大,符合碱掺量越低,试块电阻越高的规律;在电加速腐蚀之后试块电阻差距拉大,这表明碱掺量越低的试块对内部钢筋的保护效果越好。

2.3 腐蚀电位

腐蚀电位可以反应出钢筋发生锈蚀的难易程度,图11给出了不同配合比试块中钢筋锈蚀全过程的腐蚀电位随电加速时间的变化情况。

图11

图11   不同陶瓷粉掺量、水胶比、模数及碱掺量试块的腐蚀电位

Fig.11   Corrosion potentials of test blocks with different ceramic powder contents (a), water-binder ratios (b), moduli (c) and alkali contents (d)


图11可知,在电加速锈蚀过程中,不同配合比试块的腐蚀电位基本都为先变小后增加的趋势,由图11a可知,陶瓷粉掺量30%的试块腐蚀电位在电加速腐蚀的每个时间段下都是最高的,这反映出30%陶瓷粉掺量的试块发生锈蚀的概率是最低的,并且30%陶瓷粉掺量的试块也是最晚出现可见裂缝的。从而可以得出陶瓷粉掺量越高,试块中钢筋的腐蚀电位越低的变化规律。

图11b可知,在电加速腐蚀之后,不同水胶比试块的腐蚀电位并未随水胶比的变化而表现出一定的规律,导致这种现象的原因可能是地聚物中的水仅有部分有助于原材料的初始溶解和后续的缩聚过程[20]。相对于水泥基材料,在一定范围内水胶比对地聚物试块的最终强度及密实程度影响较小,但水胶比过大确实会增加地聚物的孔隙率,从而导致密实性较差,从而使得水胶比对钢筋的腐蚀电位影响不大。

图11c可知,在电加速之后腐蚀电位随着水玻璃模数的增长而增长,原因可能是水玻璃模数提高,试块强度相应增大,使得试块的内部更加密实,Cl-、SO42-等有害离子很难进入试块内部,钢筋发生锈蚀的概率降低。

图11d可知,在未通电前试块中钢筋的腐蚀电位随碱掺量的增加依次增大;在电加速锈蚀之后,随碱掺量的增加,腐蚀电位变化速率依次减慢。发生此现象的原因可能为在未通电锈蚀之前,碱掺量高的试块内部存在的OH-更多,使得钢筋发生锈蚀的可能性更小;但碱掺量过高时,较高的溶液浓度以及早期反应中会产生更多的凝胶,导致浆体的粘稠度增加,流动性降低,试块内部孔隙增加,降低了试块的密实度[21],所以造成电加速腐蚀之后碱掺量越高,试块的腐蚀电位越低。

2.4 极化曲线

2.4.1 不同陶瓷粉掺量的影响

图12为不同陶瓷粉掺量下试块中钢筋随电加速锈蚀时间变化的极化曲线,不同陶瓷粉掺量的试块在未通电腐蚀之前的极化曲线有着共同特征:阴极极化曲线非常平缓,而阳极极化曲线非常陡峭。阳极Tafel曲线斜率βa非常大,电极阳极溶解过程阻力非常大,表明钢筋此时处于钝化状态。

图12

图12   不同电加速腐蚀时间下陶瓷粉掺量30%、40%及50%试块的Tafel极化曲线

Fig.12   Tafel polarization curves of test blocks with ceramic powder contents of 30% (a), 40% (b) and 50% (c) after electro-lytic accelerated corrosion for different time


随着电加速腐蚀的延长,极化曲线与未通电腐蚀前出现明显差别,主要表现在阳极极化曲线的坡度明显减缓,即Tafel斜率明显降低,表明钢筋已经锈蚀。

2.4.2 不同配合比的影响

图13可以看出,在未通电锈蚀前,腐蚀电流密度Icorr都很低,其值均在1 μA/cm2以下,这表明在此阶段钢筋表面的钝化膜并未发生破坏。

图13

图13   不同陶瓷粉掺量、水胶比、模数及碱掺量试块的腐蚀电流密度

Fig.13   Corrosion current densities of test blocks with different ceramic powder contents (a), water-binder ratios (b), moduli (c) and alkali contents (d)


图13a可知,在电加速锈蚀之后,Icorr值的变化基本符合随陶瓷粉掺量的增加而增加的规律,表明陶瓷粉掺量越高,钢筋的腐蚀速率越快。由图13b可知,在电加速锈蚀之后,0.55水胶比试块中钢筋的Icorr值最大,表明0.55水胶比试块中钢筋的锈蚀速度最快。由图13c可知,水玻璃模数越大,Icorr值越小,表明水玻璃模数越大的试块对钢筋的保护效果越好。由图13d可知,不同碱掺量的试块在电加速锈蚀之后,基本符合碱掺量越高,试块的Icorr值越高的规律,表明碱掺量越高,试块中钢筋腐蚀速率越快。

图14示出了不同配合比试块的极化电阻。可知,钢筋极化电阻随腐蚀时间的增加呈现先下降后上升再下降的趋势。

图14

图14   不同陶瓷粉掺量、水胶比、模数及碱掺量试块的极化电阻

Fig.14   Polarization resistances of test blocks with different ceramic powder contents (a), water-binder ratios (b), moduli (c) and alkali contents (d)


在电加速24 h之后钢筋极化电阻急速下降,其原因可能为在侵蚀初期,试块的内部结构松散,各种有害离子可以更容易进入试块内部,大量Cl-在钢筋表面聚集,使得钢筋表面钝化膜被破坏。但随侵蚀时间的延长,SO42-、NaCl等与试块中的Ca2+、C-(A)-S-H和N-A-S-H凝胶发生反应,生成石膏、方钠石等膨胀产物,堵塞试块内部部分孔隙,提高试块密实度,使得钢筋极化电阻上升;后由于SO42-、Cl-等持续侵蚀,试块的内部孔隙被胀裂形成连通孔,试块出现裂纹,钢筋锈蚀程度加剧,钢筋极化电阻降低。

3 结论

(1) 电加速腐蚀的整个过程中,试块电阻呈现先上升后下降的趋势,表明SO42-和NaCl在腐蚀前期可以增强铁尾矿基地聚物的密实性。

(2) 在同一盐碱地模拟溶液和电加速条件下,合理配合比的试块对钢筋的保护效果更好,尤其是陶瓷粉掺量对钢筋的保护效果影响更加明显;陶瓷粉掺量低,初始电阻较低的试块对石膏、铁锈等膨胀产物吸收性更好,在盐碱地复杂侵蚀环境中抗锈蚀性能更好。

(3) 通过试块的Rc值变化规律得出陶瓷粉掺量较低、水玻璃模数较高、碱掺量较低的配合比试块的抗锈蚀能力更好。

(4) 陶瓷粉掺量较高、水玻璃模数较低、碱掺量较高的试块腐蚀电流较大,钢筋的锈蚀程度也较大。

参考文献

Lin P Z, Wang Y Y.

Durability of concrete bridge exposed to chloride ion erosion in saline alkali soil

[J]. Bridge Constr., 2022, 52(6): 73

[本文引用: 1]

蔺鹏臻, 王雲一.

混凝土桥梁受盐碱地中氯离子侵蚀的耐久性研究

[J]. 桥梁建设, 2022, 52(6): 73

[本文引用: 1]

Júnior N S A, Neto J S A, Santana H A, et al.

Durability and service life analysis of metakaolin-based geopolymer concretes with respect to chloride penetration using chloride migration test and corrosion potential

[J]. Constr. Build. Mater., 2021, 287: 122970

[本文引用: 1]

Shee-Ween O, Cheng-Yong H, Yun-Ming L, et al.

Sintered and unsintered pressed fly ash geopolymer: A comprehensive study on structural transformation in nitric and sulfuric acid

[J]. J. Build. Eng., 2024, 93: 109823

[本文引用: 1]

Wang A G, Zheng Y, Zhang Z H, et al.

The durability of alkali-activated materials in comparison with ordinary portland cements and concretes: A review

[J]. Engineering, 2020, 6: 695

[本文引用: 1]

Saptamongkol A, Sata V, Wongsa A, et al.

Hybrid geopolymer paste from high calcium fly ash and glass wool: Mechanical, microstructure, and sulfuric acid and magnesium sulfate resistance characteristics

[J]. J. Build. Eng., 2023, 76: 107245

[本文引用: 1]

Wang H J, Wang Y J, Li W C, et al. Report on National Mine Resources Conservation and Comprehensive Utilization [M]. Beijing: Geological Publishing House, 2019: 14

[本文引用: 1]

王海军, 王伊杰, 李文超 . 全国矿产资源节约与综合利用报告2019 [M]. 北京: 地质出版社, 2019: 14

[本文引用: 1]

Huang W, Xue K, Zhang Z L, et al.

Research and application progress of iron tailings sand

[J]. Bull. Chin. Ceram. Soc., 2024, 43: 3655

[本文引用: 1]

With the rapid development of China's mineral industry, the emission of iron tailings sand has increased sharply. At present, the negative storage and landfill are still the main treatment methods, which does not only occupy a large amount of land resources, but also cause serious environmental pollution. Therefore, large-scale consumption of iron tailings sand is imminent. Iron tailings sand is a kind of waste discharged after the ‘useful part' of iron ore is selected by grinding, flotation or magnetic separation under a certain condition. Compared with natural fine aggregate, the particle is finer, angular and more solid, which could be widely used in various practical projects. Among them, the regional differences of iron tailings, raw ore composition, grade, particle size and mining beneficiation refining process have a greater impact on the physical and chemical properties. As an inert material, different activation methods could be conducted to improve the activity of iron tailings sand, whereas, the composite activation is the most effective technology. In this paper, the utilization of building materials of iron tailings sand at home and abroad and its application in other fields are reviewed. The influence of concrete prepared by iron tailings sand on mechanical properties and durability is summarized. The key properties of the application in road functional materials are discussed. The application status of iron tailings sand-based bricks is sorted out. The feasibility of using it to prepare geopolymer is evaluated. Its advantages in the preparation of mesoporous molecular sieves and the improvement of expansive soil are discussed.

黄 伟, 薛 葵, 张子龙 .

铁尾矿砂的研究与应用进展

[J]. 硅酸盐通报, 2024, 43: 3655

[本文引用: 1]

Shang M G, Zhang Y S, He Z M, et al.

Study on corrosion deterioration of reinforced concrete under constant acceleration test based on double stress

[J]. Mater. Rep., 2022, 36: 21030289

[本文引用: 1]

尚明刚, 张云升, 何忠茂 .

基于双应力的钢筋混凝土恒加试验腐蚀劣化规律研究

[J]. 材料导报, 2022, 36: 21030289

[本文引用: 1]

Tong Z F, Zeng Q P, Wang J X, et al.

Research status and prospects of geopolymers preparation from tailings

[J]. Nonferr. Met. Sci. Eng., 2021, 12(4): 96

[本文引用: 1]

佟志芳, 曾庆钋, 王佳兴 .

利用尾矿制备地聚物研究现状及展望

[J]. 有色金属科学与工程, 2021, 12(4): 96

[本文引用: 1]

Liu J R, Shang H S, Wang W Z, et al.

Current density and corrosion morghology of steel bar corrosion in reinforced concrete

[J]. Corros. Prot., 2021, 42(7): 34

[本文引用: 1]

刘继睿, 商怀帅, 王玮钊 .

钢筋混凝土的通电锈蚀电流密度及钢筋锈蚀形貌

[J]. 腐蚀与防护, 2021, 42(7): 34

[本文引用: 1]

Qiao G B, Qiao H X, Lu C G.

Study on energized corrosion mechanism of reinforced concrete in groundwater environment of Lanzhou metro

[J]. Mater. Rep., 2022, 36: 21010008

[本文引用: 1]

乔国斌, 乔宏霞, 路承功.

兰州地铁地下水环境中钢筋混凝土通电锈蚀机理研究

[J]. 材料导报, 2022, 36: 21010008

[本文引用: 1]

Zhang J H, Yi C H, Wang S K, et al.

Accelerated corrosion of steel bars in new and old concrete structures

[J]. J. Chin. Ceram. Soc., 2022, 50: 2096

[本文引用: 1]

张菊辉, 衣存浩, 王诗昆 .

新老混凝土的钢筋加速锈蚀

[J]. 硅酸盐学报, 2022, 50: 2096

[本文引用: 1]

Zuo X B, Qiu L F, Tang Y J, et al.

Corrosion process of steel bar in cement pastes under combined action of chloride and sulfate attacks

[J]. J. Build. Mater., 2017, 20: 352

[本文引用: 1]

左晓宝, 邱林峰, 汤玉娟 .

氯盐和硫酸盐侵蚀下水泥净浆中钢筋锈蚀过程

[J]. 建筑材料学报, 2017, 20: 352

[本文引用: 1]

Da B, Yu H F, Ma H Y, et al.

Equivalent electrical circuits fitting of electrochemical impedance spectroscopy for rebar steel corrosion of coral aggregate concrete

[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 260

[本文引用: 1]

达 波, 余红发, 麻海燕 .

等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究

[J]. 中国腐蚀与防护学报, 2019, 39: 260

[本文引用: 1]

Deng X, Wu Q.

Reinforcement corrosion of coral concrete with different reinforcement types and protective thickness under bending stress

[J]. Bull. Chin. Ceram. Soc., 2023, 42: 898

[本文引用: 1]

This paper includes handmade equipment to conduct bending stress loading experiments on coral concrete members. And the influence of bending stress on corrosion of various reinforcement types of steel bar in coral concrete with various protective layer thicknesses was investigated. ABAQUS finite element analysis software was used to simulate the stress magnitude and stress state of the reinforced coral concrete member model under bending stress. The corrosion of several types of steel reinforcement under bending stress was also compared and examined using the polarisation curves and electrochemical impedance spectrum analysis. The findings indicate that handmade equipment can better simulate the corrosion of reinforcing steel under the coupling effect of bending stress and marine environment, and the corrosion resistance of reinforcing steel decreases with increasing bending stress. The effect of increasing bending stress on reinforcement corrosion is significant within a range of protective layer thickness (0~30 mm), but as protective layer thickness increases to a certain point (50 mm), the effect of increasing bending stress on reinforcement corrosion gradually decreases. The influence of bending stress on reinforcement from strong to weak is HPB400 steel bar, galvanized steel bar, 304 stainless steel bar.

邓 潇, 吴 庆.

弯曲应力作用下不同钢筋种类和保护层厚度珊瑚混凝土的钢筋锈蚀研究

[J]. 硅酸盐通报, 2023, 42: 898

[本文引用: 1]

Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, et al.

Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O

[J]. Cem. Concr. Res., 2011, 41: 923

[本文引用: 1]

Zheng Y, Wang A G, Liu K W, et al.

Sulfate resistance and mechanism analysis of different geopolymer mortars

[J]. J. Build. Mater., 2021, 24: 1224

[本文引用: 1]

郑 毅, 王爱国, 刘开伟 .

不同地聚物砂浆抗硫酸盐侵蚀性能及其机理分析

[J]. 建筑材料学报, 2021, 24: 1224

[本文引用: 1]

Lyu Q F, Wang Z S, Chen Y, et al.

Study on influence mechanism of sodium chloride on the strength of alkali-activated geopolymers

[J]. J. Funct. Mater., 2020, 51: 2067

[本文引用: 1]

吕擎峰, 王子帅, 陈 臆 .

氯化钠对碱激发地聚物强度影响机理研究

[J]. 功能材料, 2020, 51: 2067

DOI      [本文引用: 1]

为阐明氯化钠掺量对碱激发地聚物强度的影响和机理,以水玻璃碱激发粉煤灰基地聚物为基础,采用UCS、XRD、FTIR、SEM和物理吸附试验研究了氯化钠掺量对碱激发地聚物强度及微观结构的影响。试验结果表明氯化钠掺入碱激发地聚物中总体效果不佳;氯化钠的少量掺入会反应生成方钠石,对强度有一定的促进作用。但随着掺入量的增加,Na<sup>+</sup>离子的钝化效应导致碱激发效果下降,铝硅酸盐原料溶解受到限制,降低了地聚合反应程度;未反应的硫酸钠沉积于地聚物体系中阻碍了体系中离子迁移,并削弱了凝胶的胶结作用,致使试样中孔隙增多、孔径增大,微观结构遭到破坏,从而限制了强度的发展。

Qiao H X, Liu Z C, Lu C G, et al.

Electrochemical characteristics of reinforced concrete with multiple cementitious system in carbonization environment

[J]. J. Hunan Univ. (Nat. Sci.), 2023, 50(3): 110

[本文引用: 1]

乔宏霞, 刘志超, 路承功 .

碳化环境下多元胶凝体系钢筋混凝土电化学特性

[J]. 湖南大学学报(自然科学版), 2023, 50(3): 110

[本文引用: 1]

Xie T Y, Visintin P, Zhao X Y, et al.

Mix design and mechanical properties of geopolymer and alkali activated concrete: review of the state-of-the-art and the development of a new unified approach

[J]. Constr. Build. Mater., 2020, 256: 119380

[本文引用: 1]

Jiang M S, Li F, Zhou L A, et al.

Effects of sodium carbonate, sodium hydroxide and water glass composite activation on properties of geopolymer cementitious materials

[J]. Bull. Chin. Ceram. Soc., 2024, 43: 929

[本文引用: 1]

Composite alkali activator was prepared by using sodium carbonate instead of sodium hydroxide to adjust the modulus of water glass. The effects of different alkali content and sodium carbonate replacement ratio on fluidity, setting time, and compressive strength of geopolymer cementitious materials were studied. The phase composition and microstructure of hydration products of geopolymer cementitious materials were analyzed through FT-IR, XRD, and SEM experiments. The results show that the combined effects of sodium hydroxide and sodium carbonate combined with composite water glass activators are superior to the effects of their individual combined with water glass activators. When alkali content is 6% (mass fraction) and the replacement ratio of sodium carbonate is 40%(mass fraction), the fluidity of geopolymer cementitious materials reaches 185 mm, and 28 d compressive strength reaches 94.4 MPa. The increase of replacement ratio of sodium carbonate can prolong the setting time of geopolymer cementitious materials. When the replacement ratio reaches 100%, the initial setting time and final setting time of geopolymer cementitious materials reach 372 and 420 min. When different alkali components are used as activators, similar hydration products are observed in geopolymer cementitious materials, mainly consist of amorphous aluminosilicate C-(A)-S-H gel.

蒋明屾, 李 飞, 周理安 .

碳酸钠、氢氧化钠与水玻璃复合激发对地聚物胶凝材料性能的影响

[J]. 硅酸盐通报, 2024, 43: 929

[本文引用: 1]

采用碳酸钠替代氢氧化钠调节水玻璃模数制备复合碱激发剂,研究不同碱掺量下碳酸钠掺入比例对地聚物胶凝材料净浆流动度、凝结时间及抗压强度的影响,并通过FT-IR、XRD和SEM试验分析地聚物胶凝材料水化产物的物相组成及微观形貌。结果表明,氢氧化钠与碳酸钠共同复合水玻璃的激发剂激发效果优于二者单独与水玻璃复合的激发剂,当碱掺量为6%(质量分数)、碳酸钠替代比例为40%(质量分数)时,地聚物胶凝材料净浆流动度为185 mm,28 d抗压强度为94.4 MPa。碳酸钠替代比例增加可延长地聚物胶凝材料凝结时间,当替代比例为100%时,地聚物胶凝材料初凝时间、终凝时间可达372和420 min。不同碱组分激发剂作用时,地聚物胶凝材料水化产物相似,均以无定形铝硅酸盐C-(A)-S-H凝胶为主。

/