Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 927-938     CSTR: 32134.14.1005.4537.2024.285      DOI: 10.11902/1005.4537.2024.285
  研究报告 本期目录 | 过刊浏览 |
转动条件下Q345B钢在人工海水中阴极保护效果试验研究
郑中逸1, 冯毅翔2, 宋沁峰1, 甘甜思雨3, 苑旺3, 董亮1()
1 常州大学石油与天然气工程学院 常州 213164
2 江苏司能润滑科技有限公司 常州 213376
3 深圳八六三新材料技术有限责任公司 深圳 518117
Effectiveness of Cathodic Protection on Rotating Test-piece of Q345B Steel in Artificial Seawater
ZHENG Zhongyi1, FENG Yixiang2, SONG Qinfeng1, GAN Tiansiyu3, YUAN Wang3, DONG Liang1()
1 School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China
2 Jiangsu Sineng Lubrucation Technology Co., Ltd., Changzhou 213376, China
3 Shenzhen 863 New Material Technology Co., Ltd., Shenzhen 518117, China
引用本文:

郑中逸, 冯毅翔, 宋沁峰, 甘甜思雨, 苑旺, 董亮. 转动条件下Q345B钢在人工海水中阴极保护效果试验研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 927-938.
Zhongyi ZHENG, Yixiang FENG, Qinfeng SONG, Tiansiyu GAN, Wang YUAN, Liang DONG. Effectiveness of Cathodic Protection on Rotating Test-piece of Q345B Steel in Artificial Seawater[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 927-938.

全文: PDF(2258 KB)   HTML
摘要: 

鼓型滤网等转动设备的阴极保护的效果受转动参数影响,本文采用试验装置模拟转动条件,考虑保护电位、占空比、转动频率等参数开展阴极保护效果的正交试验。结果表明:随着转动频率由0.010 r/d增大到0.020 r/d,阴极保护的保护度呈现先升高后降低的规律,在频率为0.015 r/d时保护效果最好,保护度高达90.67%,这与腐蚀产物的形态和流速有关;随着占空比由0.25增大到0.75,阴极保护的保护度逐渐增大;对于保护电位来说,当设定的保护电位由-0.80 V负向增加到-1.25 V (vs. SSC),阴极保护的保护度由12.43%增大到90.67%,这可能和阴极极化产物CaCO3和Mg(OH)2的占比有关系,当CaCO3占比低而Mg(OH)2占比高时,钙质沉积层更加紧密,阴极保护效果越好。

关键词 Q345B鼓型滤网转动条件阴极保护钙质沉积层    
Abstract

The effectiveness of cathodic protection on rotating equipment, such as drum filters is influenced by rotation parameters. Herein, a test set, on which test-pieces made of Q345B steel can be inserted, was designed to simulate the rotation circumstance of drum filters in an artificial seawater. Then, the effectiveness of cathodic protection on the test-pieces of Q345B steel was assessed according to the known orthogonal experiment procedure in terms of the varying parameters such as protection potential, duty cycle, and rotation frequency etc. The results show that as the rotation frequency increases from 0.010 r/d to 0.020 r/d, the degree of cathodic protection effectiveness first increases and then decreases, with the best protection effectiveness emerges at the frequency of 0.015 r/d, where the protection degree reaches up to 90.67%. This may be related to the flow rate and the morphology of corrosion products. As the duty cycle increases from 0.25 to 0.75, the degree of cathodic protection gradually increases. Regarding the protection potential, when the set protection potential negatively increases from -0.80 V to -1.25 V (vs. SSC), the degree of cathodic protection increases from 12.43% to 90.67%. This may be related to the proportion of cathodic polarization products CaCO3 and Mg(OH)2. When the proportion of CaCO3 is low and that of Mg(OH)2 is high, the Ca-containing deposition layer becomes tighter, resulting in better cathodic protection effectiveness.

Key wordsQ345B    drum filter    rotation conditions    cathodic protection    calcium deposition layer
收稿日期: 2024-09-03      32134.14.1005.4537.2024.285
ZTFLH:  TG172.5  
基金资助:国家自然科学基金(51401017);江苏省研究生科研与实践创新计划项目(SJCX24_1684)
通讯作者: 董亮,E-mail:dongliang@cczu.edu.cn,研究方向为腐蚀与防护
Corresponding author: DONG Liang, E-mail: dongliang@cczu.edu.cn
作者简介: 郑中逸,男,1999年生,硕士
Experimental group numberFrequency / r·d-1Duty cycleProtective potential / VTest cycle / h
10.0100.75-1.2524
20.0150.75-1.2524
30.0200.75-1.2524
40.0150.25-1.2524
50.0150.50-1.2524
60.0150.75-0.8024
70.0150.75-0.9524
80.0150.75-1.0524
90.0150.75-1.1524
100.0150.75-1.2548
110.0150.75-1.2572
表1  试验参数设置
图1  不同试验条件下Q345B钢腐蚀速率
图2  不同试验条件下Q345B钢阴极保护的保护度
图3  Q345B钢在正交试验条件下未施加和施加阴极保护的宏观形貌
图4  Q345B钢在施加阴极保护的各种条件下试验后的XRD谱
图5  Q345B钢在施加阴极保护的不同条件下实验后的表面SEM形貌
Frequencies / r·d-1ElementLine typeMass fraction / %Mass fraction / % σAtomic fraction / %
0.010MgK-line system97.760.2898.79
Ca1.320.130.81
Fe0.930.250.41
0.015MgK-line system97.420.3198.63
Ca1.310.140.80
Fe1.270.280.56
0.020MgK-line system80.520.3687.56
Ca17.560.2611.39
Fe2.220.321.05
表2  不同频率下阴极保护试样的EDS测试结果
Duty cyclesElementLine typeMass fraction / %Mass fraction / % σAtomic fraction / %
0.25MgK-line system61.030.3577.98
Ca1.600.111.24
Fe37.370.3520.79
0.50MgK-line system95.650.3297.72
Ca1.980.141.23
Fe2.370.291.05
0.75MgK-line system97.420.3198.63
Ca1.310.140.80
Fe1.270.280.56
表3  不同占空比下阴极保护试样的EDS测试结果
Polarization potential / VElementLine typeMass fraction / %Mass fraction / % σAtomic fraction / %
-0.80MgK-line system0.360.050.82
Ca0.110.040.16
Fe99.530.0699.02
-0.95MgK-line system3.100.086.57
Ca4.320.085.57
Fe92.570.1287.56
-1.05MgK-line system0.200.050.46
Ca0.140.050.20
Fe99.660.0799.35
-1.15MgK-line system95.190.3297.58
Ca1.550.140.96
Fe3.270.301.46
-1.25MgK-line system97.420.3198.63
Ca1.310.140.80
Fe1.270.280.56
表4  不同极化电位下阴极保护试样的EDS测试结果
图6  Q345B钢标准试验组的极化电流密度
图7  Q345B钢在不同影响因素条件下海水介质中的阴极保护极化电流密度
图8  不同频率条件下Q345B钢的电化学阻抗谱
图9  不同条件下Q345B钢的等效电路模型
Frequency / r·d-1Rs / Ω·cm2Rt / Ω·cm2Rf / Ω·cm2CPE1-TCPE1-PCPE2-TCPE2-PW-RW-TW-P
Normal CP9.2271524803.41.368 × 10-30.743523.88 × 10-30.75733---
0.01020.79436.5-1.168 × 10-40.50827--145550.840.59921
0.01512.05120832062.167 × 10-30.569392.647 × 10-30.50941---
0.0204.19915.18-1.530 × 10-30.6165--690.318.660.47257
表5  不同频率条件下Q345B钢电化学阻抗谱的拟合结果
图10  不同占空比条件下Q345B钢的电化学阻抗谱
Duty cycleRs / Ω·cm2Rf / Ω·cm2CPE1-TCPE1-PRt / Ω·cm2CPE2-TCPE2-P
Normal CP9.227803.41.368 × 10-30.7435215243.88 × 10-30.75733
0.2510.38-5.549 × 10-30.5196786.9--
0.507.86869.561.940 × 10-30.4707229285.406 × 10-30.66481
0.7512.052062.167 × 10-30.56939120832.647 × 10-30.50941
表6  不同占空比条件下电化学阻抗谱的拟合结果
图11  不同保护电位条件下Q345B钢的电化学阻抗谱
Protective potential / VRs / Ω·cm2Rf / Ω·cm2CPE1-TCPE1-PRt / Ω·cm2CPE2-TCPE2-P
Normal CP9.227803.41.368 × 10-30.7435215243.88 × 10-30.75733
-0.808.69315.961.147 × 10-20.4684369.91.749 × 10-20.71615
-0.955.185-2.247 × 10-30.597771618--
-1.056.18815.882.135 × 10-20.42697988.51.095 × 10-20.66248
-1.158.340.262.305 × 10-30.5297615012.562 × 10-30.68743
-1.2512.052062.167 × 10-30.56939120832.647 × 10-30.50941
表7  不同保护电位条件下Q345钢电化学阻抗谱的拟合结果
[1] Syromyatnikova A, Bolshakov A, Ivanov A, et al. The corrosion damage mechanisms of the gas pipelines in the Republic of Sakha (Yakutia) [J]. Procedia Struct. Integr., 2019, 20: 259
[2] Ma X W, Xue R J, Wang T T, et al. Comparison of corrosion resistance of Zr-based amorphous alloys and traditional alloys in seawater [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 949
[2] 马晓伟, 薛荣洁, 王涛涛 等. 锆基非晶合金与传统合金在海水中的耐腐蚀性能对比研究 [J]. 中国腐蚀与防护学报, 2024, 44: 949
doi: 10.11902/1005.4537.2023.297
[3] Sun W D. Evaluation method and application of effectiveness of sacrificial anode cathodic protection for offshore submarine oil pipeline [J]. Corros. Prot., 2024, 45: 93
[3] 孙伟栋. 近海海底管道阴极保护有效性的评估方法及应用 [J]. 腐蚀与防护, 2024, 45: 93
[4] Wang J, Meng J, Tang X, et al. Assessment of corrosion behavior of steel in deep ocean [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 1
[4] 王 佳, 孟 洁, 唐 晓 等. 深海环境钢材腐蚀行为评价技术 [J]. 中国腐蚀与防护学报, 2007, 27: 1
[5] Ma H, Tian H Y, Liu Y X, et al. Corrosion behavior of S420 steel in different marine zones [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 635
[5] 麻 衡, 田会云, 刘宇茜 等. S420海工钢在不同海洋区带环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 635
[6] Zhou X B, Wang Q, Su H, et al. Low efficiency of cathodic protection in marine tidal corrosion of X80 steel in the presence of Pseudomonas sp. [J]. Bioelectrochemistry, 2024, 157: 108656
[7] Liu J G, Li Y T, Hou B R. Corrosion behavior of N80 steel under immersion and wet-dry cyclic condition [J]. Corros. Prot., 2012, 33: 925
[7] 刘建国, 李言涛, 侯保荣. N80钢模拟全浸区和干湿交替试样的腐蚀行为 [J]. 腐蚀与防护, 2012, 33: 925
[8] Liu J G, Li Y T, Hou B R. Progress in corrosion and protection of steels in marine splash zone [J]. Corros. Prot., 2012, 33: 833
[8] 刘建国, 李言涛, 侯保荣. 海洋浪溅区钢铁腐蚀与防护进展 [J]. 腐蚀与防护, 2012, 33: 833
[9] Huang Z F, Guo J Z, Liu G Y, et al. Effect of wet-dry cycling on performance of aluminum alloy sacrificial anodes in seawater [J]. Corros. Prot., 2016, 37: 160
[9] 黄振风, 郭建章, 刘广义 等. 海水干湿交替环境对铝合金牺牲阳极性能的影响 [J]. 腐蚀与防护, 2016, 37: 160
[10] Wang X, Xiong S H. Insufficient dissolution reason of sacrificial anode in a nuclear power plant [J]. Corros. Prot., 2021, 42: 98
[10] 王 鑫, 熊书华. 核电厂鼓型滤网牺牲阳极溶解不足的原因 [J]. 腐蚀与防护, 2021, 42: 98
[11] Zhao X H, Weng Y J, Li X Y. Effectiveness of cathodic protection by intermittent power supply [J]. Corros. Sci. Prot. Technol., 2003, 15: 196
[11] 赵雪红, 翁永基, 李相怡. 间歇供电阴极保护的效果研究 [J]. 腐蚀科学与防护技术, 2003, 15: 196
[12] Li P. Research on initial corrosion behavior of X60 pipeline steel in simulated tidal zone [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 338
[12] 李 平. X60管线钢在模拟潮差区初期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 338
[13] Mu X, Wei J, Dong J H, et al. The effect of sacrificial anode on corrosion protection of Q235B steel in simulated tidal zone [J]. Acta Metall. Sin., 2014, 50: 1294
[13] 穆 鑫, 魏 洁, 董俊华 等. 牺牲阳极保护对Q235B钢在模拟海洋潮差区间腐蚀行为的影响 [J]. 金属学报, 2014, 50: 1294
[14] Zhang W L, Liu J R, Huang G Q. Corrosion behavior of E36 steel in artificial seawater and 3%NaCl solution [J]. Mater. Prot., 2009, 42: 27
[14] 张万灵, 刘建容, 黄桂桥. E36钢的海水腐蚀模拟试验研究 [J]. 材料保护, 2009, 42: 27
[15] Wang Y, Mu X, Dong J H, et al. Insight into atmospheric corrosion evolution of mild steel in a simulated coastal atmosphere [J]. J. Mater. Sci. Technol., 2021, 76: 41
doi: 10.1016/j.jmst.2020.11.021
[16] Law D W, Nicholls P, Christodoulou C. Residual protection of steel following suspension of Impressed Current Cathodic Protection system on a wharf structure [J]. Constr. Build. Mater., 2019, 210: 48
[17] Glass G K, Hassanein A M, Buenfeld N R. Cathodic protection afforded by an intermittent current applied to reinforced concrete [J]. Corros. Sci., 2001, 43: 1111
[18] Fan F Q, Song J W, Li C J, et al. Effect of flow velocity on cathodic protection of DH36 steel in seawater [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 550
[18] 范丰钦, 宋积文, 李成杰 等. 海水流速对DH36平台钢阴极保护的影响 [J]. 中国腐蚀与防护学报, 2014, 34: 550
doi: 10.11902/1005.4537.2013.183
[19] Wang C G, Daniel E F, Li C, et al. Corrosion mechanisms of carbon steel-and stainless steel-bolt fasteners in marine environments [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 737
[19] 王长罡, Daniel E F, 李 超 等. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究 [J]. 中国腐蚀与防护学报, 2023, 43: 737
doi: 10.11902/1005.4537.2023.151
[20] Barchiche C, Deslouis C, Gil O, et al. Role of sulphate ions on the formation of calcareous deposits on steel in artificial seawater; the formation of Green Rust compounds during cathodic protection [J]. Electrochim. Acta, 2009, 54: 3580
[21] Mu X, Wei J, Dong J H, et al. Electrochemical study on corrosion behaviors of mild steel in a simulated tidal zone [J]. Acta Metall. Sin., 2012, 48: 420
doi: 10.3724/SP.J.1037.2011.00666
[21] 穆 鑫, 魏 洁, 董俊华 等. 低碳钢在模拟海洋潮差区的腐蚀行为的电化学研究 [J]. 金属学报, 2012, 48: 420
[22] Yuan G W. Applications of electrochemical impedance spectroscopy to the research of electrodeposition-Part Ⅲ [J]. Electroplat. Finish., 2008, 27: 1
[22] 袁国伟. 电化学阻抗谱在电沉积研究中的应用(三) [J]. 电镀与涂饰, 2008, 27: 1
[23] Shao Y P, Yan A J, Li B, et al. Corrosion behavior of Q235 carbon steel for grounding grids in soil at Shanghai district [J]. Corros. Sci. Prot. Technol., 2015, 27: 333
[23] 邵玉佩, 闫爱军, 李 波 等. 接地极Q235碳钢材料在上海土壤环境中的腐蚀行为 [J]. 腐蚀科学与防护技术, 2015, 27: 333
doi: 10.11903/1002.6495.2014.304
[24] Dong L, Song Q F, Wu F Y, et al. Effect of environmental medium on corrosion behavior of X80 steel under dynamic DC interference [J]. Corros. Prot., 2021, 42: 1
[24] 董 亮, 宋沁峰, 吴昉赟 等. 环境介质对动态直流干扰下X80钢腐蚀行为的影响 [J]. 腐蚀与防护, 2021, 42: 1
[1] 李新城, 李兆南, 王海锋, 徐云泽, 王明昱, 甄兴伟. DH36海洋工程钢焊接结构的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[2] 于佳汇, 王彤彤, 高云, 高荣杰. Bi2S3/TiO2 纳米复合材料的制备及其对304不锈钢的光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 901-908.
[3] 刘国. 关于埋地防腐层管道直流电位梯度(DCVG)测量与%IR计算的讨论[J]. 中国腐蚀与防护学报, 2024, 44(2): 512-518.
[4] 叶梦颖, 于佳汇, 王彤彤, 高荣杰. Bi2S3/CdS/TiO2 纳米复合材料的制备及对304不锈钢的光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 372-380.
[5] 王彤彤, 张隽睿, 高云, 高荣杰. NH4F-(NH4)2SO4 复合电解液中制备莲藕状TiO2 纳米管阵列及光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 389-395.
[6] 顾玉慧, 董亮, 宋沁峰. 微型金属氧化物pH电极的制备及腐蚀防护应用进展[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[7] 寇杰, 任哲. 基于数值计算的罐底板阴极保护电位分布研究进展与展望[J]. 中国腐蚀与防护学报, 2023, 43(4): 871-881.
[8] 李长春, 何仁碧, 陈以龙, 何仁洋, 王政骁. 交流干扰与阴极保护共同作用对X65管线钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 179-185.
[9] 张海兵, 张一晗, 马力, 邢少华, 段体岗, 闫永贵. 深浅交变环境牺牲阳极电化学性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 867-872.
[10] 鲍晨宇, 李建民, 叶梦颖, 高荣杰. 复合电解液中TiO2纳米管阵列的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42(5): 759-764.
[11] 苏娜, 叶梦颖, 李建民, 高荣杰. ZIF-8/TiO2纳米复合材料的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42(2): 267-273.
[12] 邓佳丽, 闫茂成, 高博文, 张辉. 高铁动态交流干扰下管道钢的腐蚀行为试验研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 127-134.
[13] 庄大伟, 杜艳霞, 陈涛涛, 鲁丹平. 区域阴极保护数值模拟边界条件反演计算方法研究及应用[J]. 中国腐蚀与防护学报, 2021, 41(3): 346-352.
[14] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[15] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.