Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 372-380     CSTR: 32134.14.1005.4537.2023.114      DOI: 10.11902/1005.4537.2023.114
  研究报告 本期目录 | 过刊浏览 |
Bi2S3/CdS/TiO2 纳米复合材料的制备及对304不锈钢的光生阴极保护性能研究
叶梦颖, 于佳汇, 王彤彤, 高荣杰()
中国海洋大学材料科学与工程学院 青岛 266100
Fabrication and Photocathodic Protection Performance of Bi2S3/CdS/TiO2 Nanocomposites for 304 Stainless Steel
YE Mengying, YU Jiahui, WANG Tongtong, GAO Rongjie()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
引用本文:

叶梦颖, 于佳汇, 王彤彤, 高荣杰. Bi2S3/CdS/TiO2 纳米复合材料的制备及对304不锈钢的光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 372-380.
Mengying YE, Jiahui YU, Tongtong WANG, Rongjie GAO. Fabrication and Photocathodic Protection Performance of Bi2S3/CdS/TiO2 Nanocomposites for 304 Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 372-380.

全文: PDF(7919 KB)   HTML
摘要: 

通过超声辅助连续离子层吸附和反应法在TiO2纳米管上负载CdS和Bi2S3,通过SEM、XRD、XPS等手段对材料的形貌、结构、元素组成和价态进行表征,在模拟太阳光下,系统研究TiO2纳米复合材料的电化学性能。结果表明,负载CdS和Bi2S3的TiO2纳米复合材料的光吸收范围扩展到可见光区,载流子的复合率也大大降低,光电流密度提升至850 μA·cm-2,是改性前的3.4倍;将其与304不锈钢耦合后,电位降至-0.99 V,比改性前的耦合电位低约70 mV,可以进一步提升对304不锈钢的光生阴极保护效果。

关键词 光生阴极保护改性Bi2S3/CdS/TiO2304不锈钢    
Abstract

TiO2 nanotube arrays are decorated with CdS and Bi2S3 by an ultrasonic-assisted successive ionic layer adsorption and reaction (SILAR) method aiming to enhance thephotoelectric conversion ability of TiO2 and correspondingly the photogenerated cathodic protection performance for 304 stainless steel. The morphology, structural, element type and valence state of the TiO2 nanocomposites are characterized by SEM, XRD and XPS, the photoelectrochemical performance of nanocomposites is studied systematically under irradiation of a simulated sunlight. The results indicate that the TiO2 nanocomposites decorated with proper amount of CdS and Bi2S3 by an optimal procedure exhibit the best performance, namely, the band gap is reduced to 2.4 eV, the light absorption range extends to the visible region, and the recombination rate of charge photogenerated carriers is greatly reduced. The electrochemical test results show that Bi2S3/CdS/TiO2 nanocomposites have the lowest charge transfer resistance and the fastest electron transfer rate, and the photocurrent density is enhanced to 850 μA·cm-2 under the condition of turning on light, which is 11.8% higher than that of CdS/TiO2 nanocomposites and 3.4 times that of TiO2 nanotube arrays. After coupling the nanocomposite with 304 stainless steel, the potential can be reduced to -0.99 V under simulated sunlight, which is about 70 mV lower than that with the undecorated TiO2 nanocomposites, and it can further enhance the photogenerated cathodic protection effect on 304 stainless steel.

Key wordsphotogenerated cathodic protection    modification    Bi2S3/CdS/TiO2    304 stainless steel
收稿日期: 2023-04-14      32134.14.1005.4537.2023.114
ZTFLH:  TG174  
通讯作者: 高荣杰,E-mail:dmh206@ouc.edu.cn,研究方向为海洋腐蚀与防护,阴极保护
Corresponding author: GAO Rongjie, E-mail:dmh206@ouc.edu.cn
作者简介: 叶梦颖,女,1998年生,硕士生
图1  TiO2纳米管阵列的制备过程示意图
图2  Bi2S3/CdS/TiO2纳米复合材料的制备过程示意图
图3  电化学测试装置示意图
图4  TiO2纳米管以及C-15/TiO2、B-3/C-15/TiO2纳米复合材料的XRD图谱
图5  TiO2纳米管及C-15/TiO2和B-3/C-15/TiO2纳米复合材料的SEM形貌及B-3/C-15/TiO2纳米复合材料的EDS谱
图6  B-3/C-15/TiO2纳米复合材料的元素分布图
图7  B-3/C-15/TiO2纳米复合材料的XPS图谱
图8  TiO2纳米管及TiO2纳米复合材料的紫外-可见漫反射谱和相应的Tauc曲线图
图9  TiO2纳米管及TiO2纳米复合材料的光致发光光谱
图10  TiO2纳米管及TiO2纳米复合材料在间歇可见光下的光生电流密度-时间曲线
图11  TiO2纳米复合材料耦合304不锈钢电极在间歇可见光下的电位变化及B-3/C-15/TiO2电位长期稳定性测试
图12  模拟太阳光下TiO2纳米复合材料的Nyquist图及等效电路图
SampleRs / Ω·cm2Q1 / F∙cm-2Rf / Ω·cm2Q2 / F·cm-2Rct / Ω·cm2n1n2
TiO24.601.2 × 10-24.351.7 × 10-331780.720.86
C-15/TiO227.59.0 × 10-423.16.7 × 10-4863.30.780.89
B-3/C-15/TiO228.11.3 × 10-314.88.4 × 10-4706.60.760.78
表1  电化学阻抗谱拟合参数
图13  Bi2S3、CdS以及TiO2半导体的能带结构示意图
1 Ma X M, Ma Z, Lu D Z, et al. Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light[J]. J. Mater. Sci. Technol., 2021, 64: 21
doi: 10.1016/j.jmst.2020.01.029
2 Shao J, Wang X T, Xu H, et al. Photoelectrochemical performance of SnS2 sensitized TiO2 nanotube for protection of 304 stainless steel[J]. J. Electrochem. Soc., 2021, 168: 016511
3 Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications[J]. Angew. Chem. Int. Ed., 2011, 50: 2904
doi: 10.1002/anie.v50.13
4 Bu Y Y, Ao J P. A review on photoelectrochemical cathodic protection semiconductor thin films for metals[J]. Green Energy Environ., 2017, 2: 331
doi: 10.1016/j.gee.2017.02.003
5 Liao T, Ma Z, Li L L, et al. Light-generated cathodic protection properties of Fe2O3/TiO2 nanocomposites for 304 stainless steel[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 36
5 廖 彤, 马 峥, 李蕾蕾 等. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39: 36
6 Wang X T, Ning X B, Shao Q, et al. ZnFeAl-layered double hydroxides/TiO2 composites as photoanodes for photocathodic protection of 304 stainless steel[J]. Sci. Rep., 2018, 8: 4116
doi: 10.1038/s41598-018-22572-7
7 Ma Z. Research on the photocathodic protection performance of TiO2 NTAs Enhanced by metal sulfide[D]. Ji’nan: Shandong University, 2020
7 马 峥. 金属硫化物提升TiO2纳米管阵列光致阴极保护性能的研究[D]. 济南: 山东大学, 2020
8 Song W Z, Li H, Cui X Q, et al. Preparation of CdIn2S4/TiO2 nanocomposites and its photocathodic protection properties for Q235 carbon steel[J]. Mater. Prot., 2021, 54(3): 15
8 宋维哲, 李 红, 崔星强 等. CdIn2S4/TiO2纳米复合材料的制备及其对Q235碳钢的光生阴极保护性能[J]. 材料保护, 2021, 54(3): 15
9 Lin Z Q, Lai Y K, Hu R G, et al. A highly efficient ZnS/CdS@TiO2 photoelectrode for photogenerated cathodic protection of metals[J]. Electrochim. Acta, 2010, 55: 8717
doi: 10.1016/j.electacta.2010.08.017
10 Li H, Wang X T, Wei Q Y, et al. Photocathodic protection of 304 stainless steel by Bi2S3/TiO2 nanotube films under visible light[J]. Nanoscale Res. Lett., 2017, 12: 80
doi: 10.1186/s11671-017-1863-9
11 Ma Z, Ma X M, Liu N Z, et al. Study on the photocathodic protection of 304 stainless steel by Ag and In2S3 co-sensitized TiO2 composite[J]. Appl. Surf. Sci., 2020, 507: 145088
doi: 10.1016/j.apsusc.2019.145088
12 Wang C J, Thompson R L, Ohodnicki P, et al. Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts[J]. J. Mater. Chem., 2011, 21: 13452
doi: 10.1039/c1jm12367j
13 Baker D R, Kamat P V. Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures[J]. Adv. Funct. Mater., 2009, 19: 805
doi: 10.1002/adfm.v19:5
14 Li X L, Liu M L, Zhu D, et al. Influence of Bi sources on TiO2/Bi2S3 composite films prepared by hydrothermal method[J]. J. Mater. Sci. Mater. Electron., 2020, 31: 4662
doi: 10.1007/s10854-020-03018-1
15 Fan J Q. Preparation and photoelectric properties of CuInS2/TiO2 nanocomposite films[D]. Kaifeng: Henan University, 2012
15 范俊奇. CuInS2/TiO2纳米复合阵列薄膜的制备与光电性能研究[D]. 开封: 河南大学, 2012
16 Li G S, Wu L, Li F, et al. Photoelectrocatalytic degradation of organic pollutants via a CdS quantum dots enhanced TiO2 nanotube array electrode under visible light irradiation[J]. Nanoscale, 2013, 5: 2118
doi: 10.1039/c3nr34253k
17 Yuan Y S, Li L J, Lei J L, et al. CdS-sensitized TiO2 nanotube arrays: preparation and enhanced photocatalytic activity[J]. Asian J. Chem., 2014, 26: 3569
doi: 10.14233/ajchem
18 Zhu Y X, Wang Y F, Chen Z, et al. Visible light induced photocatalysis on CdS quantum dots decorated TiO2 nanotube arrays[J]. Appl. Catal., 2015, 498A: 159
19 Zeng Q Y, Bai J, Li J H, et al. Combined nanostructured Bi2S3/TNA photoanode and Pt/SiPVC photocathode for efficient self-biasing photoelectrochemical hydrogen and electricity generation[J]. Nano Energy, 2014, 9: 152
doi: 10.1016/j.nanoen.2014.06.023
20 Wang H Y, Zhu W, Chong B H, et al. Improvement of photocatalytic hydrogen generation from CdSe/CdS/TiO2 nanotube-array coaxial heterogeneous structure[J]. Int. J. Hydrog. Energy, 2014, 39: 90
doi: 10.1016/j.ijhydene.2013.10.048
21 Li Z X, Xie Y L, Xu H, et al. Expanding the photoresponse range of TiO2 nanotube arrays by CdS/CdSe/ZnS quantum dots co-modification[J]. J. Photochem. Photobiol., 2011, 224A: 25
22 Zhu Y F, Zhang J, Xu L, et al. Fabrication and photoelectrochemical properties of ZnS/Au/TiO2 nanotube array films[J]. Phys. Chem. Chem. Phys., 2013, 15: 4041
doi: 10.1039/c3cp43572e
23 Wu Z, Yuan D, Lin S, et al. Enhanced photoelectrocatalytic activity of Bi2S3-TiO2 nanotube arrays hetero-structure under visible light irradiation[J]. Int. J. Hydrog. Energy, 2020, 45: 32012
doi: 10.1016/j.ijhydene.2020.08.258
24 Qiao J L, Wang Q Y, Ye J X, et al. Enhancing photoelectrochemical performance of TiO2 nanotube arrays by CdS and Bi2S3 co-sensitization[J]. J. Photochem. Photobiol., 2016, 319-320A: 34
25 Lv P, Fu W Y, Yang H B, et al. Simple synthesis method of Bi2S3/CdS quantum dots cosensitized TiO2 nanotubes array with enhanced photoelectrochemical and photocatalytic activity[J]. CrystEngComm, 2013, 15: 7548
doi: 10.1039/c3ce40863a
26 Zheng X H, Das S, Gu Y H, et al. Optimal engineering of CdS/PbS co-sensitized TiO2 nanotube arrays for enhanced photoelectrochemical performance[J]. Ceram. Int., 2020, 46: 12050
doi: 10.1016/j.ceramint.2020.01.246
27 Su N, Ye M Y, Li J M, et al. Fabrication of ZIF-8/TiO2 composite film and its photogeneration cathodic protection performance[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 267
27 苏 娜, 叶梦颖, 李建民 等. ZIF-8/TiO2纳米复合材料的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42: 267
28 Bao C Y, Li J M, Ye M Y, et al. Preparation of TiO2 nanotube arrays in composite electrolytes and their photogenerated cathodic protection performance[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 759
28 鲍晨宇, 李建民, 叶梦颖 等. 复合电解液中TiO2纳米管阵列的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42: 759
doi: 10.11902/1005.4537.2021.255
29 Li S N, Fu J J. Improvement in corrosion protection properties of TiO2 coatings by chromium doping[J]. Corros. Sci., 2013, 68: 101
doi: 10.1016/j.corsci.2012.10.040
30 Wan Y L, Han M M, Yu L M, et al. Fabrication and photoelectrochemical properties of TiO2/CuInS2/Bi2S3 core/shell/shell nanorods electrodes[J]. RSC Adv., 2015, 5: 78902
doi: 10.1039/C5RA14548A
31 Yu J D, Gong C, Wu Z, et al. Efficient visible light-induced photoelectrocatalytic hydrogen production using CdS sensitized TiO2 nanorods on TiO2 nanotube arrays[J]. J. Mater. Chem., 2015, 3A: 22218
32 Huang G Z, Zhang J, Jiang F, et al. Excellent photoelectrochemical activity of Bi2S3 nanorod/TiO2 nanoplate composites with dominant {001} facets[J]. J. Solid State Chem., 2020, 281: 121041
doi: 10.1016/j.jssc.2019.121041
33 Dai G P, Yu J G, Liu G. Synthesis and enhanced visible-light photoelectrocatalytic activity of p-n junction BiOI/TiO2 nanotube arrays[J]. J. Phys. Chem., 2011, 115C: 7339
34 Li D, Haneda H, Hishita S, et al. Visible-light-driven N-F-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification[J]. Chem. Mater., 2005, 17: 2596
doi: 10.1021/cm049099p
35 Zhang L, Wang X T, Li H, et al. Photogenerated cathodic protection properties of CdSe-TiO2 composite material on 304 stainless steel[J]. Corros. Prot., 2015, 36: 258
35 张 亮, 王秀通, 李 红 等. CdSe-TiO2复合材料对304不锈钢的光生阴极保护性能[J]. 腐蚀与防护, 2015, 36: 258
36 Sun M M, Chen Z Y, Bu Y Y. Enhanced photoelectrochemical cathodic protection performance of the C3N4@In2O3 nanocomposite with quasi-shell-core structure under visible light[J]. J. Alloy. Compd., 2015, 618: 734
doi: 10.1016/j.jallcom.2014.08.234
37 Kong Y Y, Sun M X, Hong X F, et al. The co-modification of MoS2 and CdS on TiO2 nanotube array for improved photoelectrochemical properties[J]. Ionics, 2021, 27: 4371
doi: 10.1007/s11581-021-04157-z
[1] 李硕, 李希超, 赵经香, 戴作强, 徐斌, 孙明月, 郑莉莉. 基于涂层改性炮管寿命的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 295-302.
[2] 王彤彤, 张隽睿, 高云, 高荣杰. NH4F-(NH4)2SO4 复合电解液中制备莲藕状TiO2 纳米管阵列及光生阴极保护性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 389-395.
[3] 李建呈, 赵京, 谢新, 王金龙, 陈明辉, 王福会. 钛合金表面磷酸盐涂层的制备及在高温盐-水蒸气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[4] 李丹鸿, 杨腾逊, 孙天翔, 李兴霖冒, 马程成, 张玥, 陈守刚. 改性SiO2 气凝胶聚氨酯复合涂层的制备及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 167-174.
[5] 曹京宜, 李敬, 殷文昌, 孟凡帝, 刘莉. 组胺改性环氧树脂及其对有机涂层性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 151-158.
[6] 陈施润, 陈文革, 钱颖, 张辉. 稀土铈改性石墨烯/水性环氧树脂复合涂料涂装技术研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 107-118.
[7] 任万凯, 连洲洋, 周康, 罗正维, 魏无际, 张雪英. 氨法脱硫液成分对304不锈钢局部腐蚀发展阶段影响探究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[8] 毛飞雄, 周羽婷, 姚文清, 沈翔, 肖龙, 李明辉. 基于PDM304不锈钢钝化膜生长动力学研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[9] 邹文杰, 丁立, 张雪姣, 陈均. 环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[10] 曹京宜, 臧勃林, 曹宝学, 李亮, 方志刚, 郑宏鹏, 刘莉, 王福会. 改性玄武岩/环氧涂层化学键合界面对涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1009-1015.
[11] 鲍晨宇, 李建民, 叶梦颖, 高荣杰. 复合电解液中TiO2纳米管阵列的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42(5): 759-764.
[12] 戈成岳, 罗祥平, 王静, 段继周, 王宁, 侯保荣. 硅烷偶联剂 (KH550) 和羟基硅油共同改性环氧树脂及配制富镁底漆性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 590-596.
[13] 刘玲, 邵紫雅, 贾天越, 刘国强, 雷冰, 孟国哲. 埃洛石纳米管负载改性及其在智能防腐涂层中的应用研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 523-530.
[14] 刘煊煊, 于金山, 高燕, 赵鹏, 王启伟, 杜卓玲, 张俊喜. APTES改性蒙脱土对镁合金表面杂化溶胶-凝胶涂层防护性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 464-470.
[15] 陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.