Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 283-295     CSTR: 32134.14.1005.4537.2024.260      DOI: 10.11902/1005.4537.2024.260
  临氢关键材料服役行为研究专刊 本期目录 | 过刊浏览 |
掺氢天然气管材及焊缝的氢损伤行为研究进展
白云龙1,2, 冷冰3, 韦博鑫1,2,4, 董立谨5, 于长坤1, 许进1,2, 孙成1,2()
1.中国科学院金属研究所 辽宁沈阳土壤大气环境材料腐蚀国家野外科学观测研究站 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
3.中国石油辽河油田公司采油工艺研究院 盘锦 110206
4.南洋理工大学机械与航空航天工程学院 新加坡 639798
5.西南石油大学新能源与材料学院 成都 610500
Research Progress on Hydrogen Damage Behavior of Pipeline Steel and Welds for Transportation of Hydrogen-blended Natural Gas
BAI Yunlong1,2, LENG Bing3, WEI Boxin1,2,4, DONG Lijin5, YU Changkun1, XU Jin1,2, SUN Cheng1,2()
1.Liaoning Shenyang Soil and Atmosphere Corrosion of Material National Observation and Research Station, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Oil Production Technology Research Institute of China Petroleum Liaohe Oilfield Company, Panjin 110206, China
4.School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
5.School of New Energy and Material, Southwest Petroleum University, Chengdu 610500, China
引用本文:

白云龙, 冷冰, 韦博鑫, 董立谨, 于长坤, 许进, 孙成. 掺氢天然气管材及焊缝的氢损伤行为研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 283-295.
Yunlong BAI, Bing LENG, Boxin WEI, Lijin DONG, Changkun YU, Jin XU, Cheng SUN. Research Progress on Hydrogen Damage Behavior of Pipeline Steel and Welds for Transportation of Hydrogen-blended Natural Gas[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 283-295.

全文: PDF(19965 KB)   HTML
摘要: 

天然气管道掺氢输送是当前氢能输送最经济有效的方式之一。然而,掺氢管材在临氢环境中服役时,管线内部的氢原子会渗透到管材中。服役过程中的高压氢环境、应力和腐蚀介质等因素也会对管线造成损伤,严重威胁掺氢管线的服役安全。基于上述问题,本文概述了管材与氢的相容性问题,从管材及焊缝组织的氢渗透行为和研究方法入手,分析了氢在管材内的吸附和扩散问题,并从影响因素等方面综述了掺氢管材及焊接组织的氢损伤形式和机理。研究结果可为掺氢天然气管材的选择、设计及安全服役提供理论基础,促进氢能经济的安全发展。

关键词 掺氢管线氢促失效氢渗透氢致开裂氢扩散    
Abstract

To transfer the blend natural gas with hydrogen through the existing natural gas pipelines is currently one of the most economical and effective ways for hydrogen energy transportation. However, when pipelines in contact with hydrogen-enriched atmospheres, hydrogen atoms can permeate into the pipeline steels inducing hydrogen damages, which can severely threaten the safety of pipelines. Factors such as high-pressure, stress, and corrosive media during service may be involved to the damage of pipelines. Based on these issues, this paper summarizes the compatibility of pipeline steels with hydrogen, analyzes the adsorption and diffusion of hydrogen within the steels from the perspectives of hydrogen permeation behavior and testing methods. Additionally, it summarizes the forms and mechanisms of hydrogen damage in pipeline steels and welds of transportation of hydrogen-blended natural gas, in terms of the relevant influencing factors. The findings may provide a theoretical basis for the selection, design, and safe service of transporting hydrogen-blended natural gas pipelines, promoting the safe development of the hydrogen economy.

Key wordshydrogen blending pipelines    hydrogen-induced failure    hydrogen permeation    hydrogen induced cracking (HIC)    hydrogen diffusion
收稿日期: 2024-08-18      32134.14.1005.4537.2024.260
ZTFLH:  TG172  
基金资助:国家自然科学基金(52301115);国家自然科学基金(51871228);中国科院金属研究所创新基金(2023-PY12)
通讯作者: 孙成,E-mail:chengsun@imr.ac.cn,研究方向为管线钢环境服役损伤机制
Corresponding author: SUN Cheng, E-mail: chengsun@imr.ac.cn
作者简介: 白云龙,男,1990年生,博士生
图1  氢扩散系数与温度函数关系[24]
图2  未掺氢和掺氢环境下铁氧体悬臂梁的扫描电镜图像[25]
图3  氢分子扩散进入板条状贝氏体(LB)和粒状贝氏体(GB)的示意图[31]
图4  H2在Fe金属(110)面吸附解离过程的电子云密度分布变化等势面[33]
图5  氢原子从吸附到扩散进入γFe(111)表面势能变化过程[34]
图6  X80钢管氢浓度分布云图[35]
图7  施加300 MPa的拉伸应力和氢微印处理后试样的SEM图像[45]
图8  原始奥氏体晶界(PAGB)和板条界(LB)在不同氢通量条件下的氢扩散示意图[46]
图9  X80钢及HAZ各亚区的氢渗透曲线[36]
图10  X100管线钢HIC裂纹扩展形貌[48]
图11  氢化对螺位错弓出运动的影响[64]
1 Qiu Y, Zhou S Y, Gu W, et al. Application prospect analysis of hydrogen enriched compressed natural gas technologies under the target of carbon emission peak and carbon neutrality [J]. Proc. CSEE, 2022, 42: 1301
1 邱 玥, 周苏洋, 顾 伟 等. “ 碳达峰、碳中和”目标下混氢天然气技术应用前景分析 [J]. 中国电机工程学报, 2022, 42: 1301
2 Yang C, Ogden J. Determining the lowest-cost hydrogen delivery mode [J]. Int. J. Hydrog. Energy, 2007, 32(2): 268
3 Miao A K, Yuan Y, Wu H, et al. Research on development status and trend of green hydrogen energy technologies under targets of carbon peak and carbon neutrality [J]. Distributed Energy, 2021, 6(4): 15
3 苗安康, 袁 越, 吴 涵 等. “双碳”目标下绿色氢能技术发展现状与趋势研究 [J]. 分布式能源, 2021, 6(4): 15
4 Li H Y, Li J L, Lin M Z, et al. Analysis on world energy supply & demand in 2020 under the background of "carbon neutrality" [J]. Nat. Gas Oil, 2021, 39(6): 132
4 李洪言, 李家龙, 林名桢 等. " 碳中和"背景下2020年全球能源供需分析 [J]. 天然气与石油, 2021, 39(6): 132
5 Li X C, Li Z N, Wang H F, et al. Hydrogen embrittlement sensitivity for welded structural parts of DH36 marine engineering steel [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 416
5 李新城, 李兆南, 王海锋 等. DH36海洋工程钢焊接结构的氢脆敏感性研究 [J]. 中国腐蚀与防护学报, 2025, 45: 416
6 Zhou Y, Zhang H B, Du M, et al. Effect of cathodic potentials on hydrogen embrittlement of 1000 MPa grade high strength steel in simulated deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 409
6 周 宇, 张海兵, 杜 敏 等. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 409
7 Zhang T M, Zhao W M, Guo W, et al. Susceptibility to hydrogen embrittlement of X65 steel under cathodic protection in artificial sea water [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 315
7 张体明, 赵卫民, 郭 望 等. 阴极保护下X65钢在模拟海水中的氢脆敏感性研究 [J]. 中国腐蚀与防护学报, 2014, 34: 315
doi: 10.11902/1005.4537.2013.109
8 Wen L J, Gao Z M, Liu Y Y, et al. Effects of applied cathodic potential on susceptibility to hydrogen embrittlement and mechanical properties of Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 271
8 文丽娟, 高志明, 刘洋洋 等. 阴极保护电位对Q235钢氢脆敏感性和力学性能的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 271
9 Haeseldonckx D, D'haeseleer W. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure [J]. Int. J. Hydrog. Energy, 2007, 32: 1381
10 Li X F, Ma X F, Zhang J, et al. Review of hydrogen embrittlement in metals: hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 759
11 Zhou X, Wu D K, Cheng X, et al. Research progress of detection techniques for permeated hydrogen [J]. J. Chin. Soc. Corr. Prot., 2023, 43: 1203
doi: 10.11902/1005.4537.2022.410
11 周 欣, 吴大康, 成 旭 等. 渗透氢检测方法研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 1203
12 Liu F, Yang H W, Deng F J. Research on hydrogen embrittlement behavior of X52 pipeline steel for hydrogen doped natural gas transportation [J]. Petro. New Energy, 2024, 36(03): 30
12 刘 方, 杨宏伟, 邓付洁. 掺氢天然气输送用X52管线钢的氢脆行为研究 [J]. 油气与新能源, 2024, 36(03): 30
13 Aucouturier M. Current solutions to hydrogen problems in steels [J]. Int. J. Hydrog. Energy, 1982, 7: 687
14 Amaro R L, Drexler E S, Slifka A J. Fatigue crack growth modeling of pipeline steels in high pressure gaseous hydrogen [J]. Int. J. Fatigue, 2014, 62: 249
15 Nanninga N E, Levy Y S, Drexler E S, et al. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments [J]. Corros. Sci., 2012, 59: 1
16 Lee Y H, Lee H M, Kim Y I, et al. Mechanical degradation of API X65 pipeline steel by exposure to hydrogen gas [J]. Met. Mater. Int., 2011, 17: 389
17 Meng B, Gu C H, Zhang L, et al. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures [J]. Int. J. Hydrog. Energy, 2017, 42: 7404
18 An T, Peng H T, Bai P P, et al. Influence of hydrogen pressure on fatigue properties of X80 pipeline steel [J]. Int. J. Hydrog. Energy, 2017, 42: 15669
19 Wasim M, Djukic M B. Hydrogen embrittlement of low carbon structural steel at macro-, micro- and nano-levels [J]. Int. J. Hydrog. Energy, 2020, 45: 2145
20 Zhao Y, Wang R. An investigation on mechanical behaviors of pipeline steel X70 after electrochemical hydrogen charging [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 293
20 赵 颖, 王 荣. X70管线钢电化学充氢后的力学行为研究 [J]. 中国腐蚀与防护学报, 2004, 24: 293
21 Wang T, Wang R. Electrochemical hydrogen charging behaviors of high strength pipeline steels [J]. Corros. Prot., 2010, 31: 450
21 王 涛, 王 荣. 高强度管线钢电化学充氢行为 [J]. 腐蚀与防护, 2010, 31: 450
22 Akiyama E, Li S J. Electrochemical hydrogen permeation tests under galvanostatic hydrogen charging conditions conventionally used for hydrogen embrittlement study [J]. Corros. Rev., 2016, 34: 103
23 Feng H, Zhu X H. Effect of electrochemical hydrogen charging on properties of X80 pipeline steel under different stress triaxialities [J]. Welded Pipe Tube, 2023, 46(9): 9
23 封 辉, 朱兴华. 不同应力三轴度下电化学充氢对X80管线钢性能影响 [J]. 焊管, 2023, 46(9): 9
24 Li J Q, Wu Z Y, Zhu L J, et al. Investigations of temperature effects on hydrogen diffusion and hydrogen embrittlement of X80 pipeline steel under electrochemical hydrogen charging environment [J]. Corros. Sci., 2023, 223: 111460
25 Asadipoor M, Pourkamali Anaraki A, Kadkhodapour J, et al. Macro- and microscale investigations of hydrogen embrittlement in X70 pipeline steel by in-situ and ex-situ hydrogen charging tensile tests and in-situ electrochemical micro-cantilever bending test [J]. Mater. Sci. Eng., 2020, 772A: 138762
26 Li S Y. Study on hydrogen adsorption/diffusion mechanism and control of X80 steel hydrogen pipeline [D]. Qingdao: China University of Petroleum (East China), 2020
26 李守英. 临氢管线X80钢氢吸附扩散机理及控制研究 [D]. 青岛: 中国石油大学(华东), 2020
27 Devanathan M A V, Stachurski Z. The adsorption and diffusion of electrolytic hydrogen in palladium [J]. Proc. R. Soc. Lond. Ser., 1962, 270A: 90
28 Johnson E W, Hill M L. The diffusivity of hydrogen in alpha iron [J]. Trans. Am. Inst. Min. Metall. Eng., 1960, 218: 1104
29 Zhang J Q, Fu L, Wang J J, et al. Hydrogen permeation and hydrogen damage behavior of low carbon steel welded joint [J]. Trans. China Welding Inst., 2014, 35(9): 23
29 张敬强, 付 雷, 王佳杰 等. 低碳钢焊接接头氢渗透与氢损伤行为分析 [J] 焊接学报, 2014, 35(9): 23
30 Sun Y H, Cheng Y F. Hydrogen permeation and distribution at a high-strength X80 steel weld under stressing conditions and the implication on pipeline failure [J]. Int. J. Hydrog. Energy, 2021, 46: 23100
31 Gou J X, Xing X, Cui G, et al. Effect of hydrogen on impact fracture of X80 steel weld: various heat inputs and coarse grain heat-affected zone [J]. Mater. Sci. Eng., 2023, 886A: 145673
32 Dong C F, Liu Z Y, Li X G, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking [J]. Int. J. Hydrog. Energy, 2009, 34: 9879
33 Wang C L, Xie Z Z, Zhao Y, et al. Simulation study on adsorption and dissociation of hydrogen on iron, platinum and nikel metals [J]. Petrol. Proc. Petrochem., 2019, 50(2): 50
33 王春璐, 解增忠, 赵 毅 等. H2在Fe, Pt, Ni表面解离的模拟研究 [J]. 石油炼制与化工, 2019, 50(2): 50
34 Chohan U K, Koehler S P K, Jimenez-Melero E. Diffusion of hydrogen into and through γ-iron by density functional theory [J]. Surf. Sci., 2018, 672-673: 56
35 Xue J H, Bai C X. Numerical simulation of hydrogen enrichment induced by welding and heat treatment for X80 steel pipe [J]. Heat Treat. Met., 2023, 48(10): 285
35 薛景宏, 白晨旭. X80钢管道焊接致氢富集及热处理数值模拟 [J]. 金属热处理, 2023, 48(10): 285
36 Zhang T M, Zhao W M, Jiang W, et al. Numerical simulation of hydrogen diffusion in X80 welded joint under the combined effect of residual stress and microstructure inhomogeneity [J]. Acta Metall. Sin., 2019, 55: 258
doi: 10.11900/0412.1961.2018.00060
36 张体明, 赵卫民, 蒋 伟 等. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟 [J]. 金属学报, 2019, 55: 258
doi: 10.11900/0412.1961.2018.00060
37 Ba L Z, Li C N, Feng Z L, et al. Effects of alloying elements on the microstructure and properties of X80 pipeline steel deposited metal [J]. J. Tianjin Univ. (Sci. Technol.), 2023, 56: 1187
37 巴凌志, 利成宁, 冯兆龙 等. 合金元素对X80管线钢熔敷金属组织和性能的影响 [J] 天津大学学报(自然科学与工程技术版), 2023, 56: 1187
38 Lee S G, Lee D H, Sohn S S, et al. Effects of Ni and Mn addition on critical crack tip opening displacement (CTOD) of weld-simulated heat-affected zones of three high-strength low-alloy (HSLA) steels [J]. Mater. Sci. Eng., 2017, 697A: 55
39 Niu H, Li B, Liu B, et al. Effect of MnS inclusion and hydrogen partial pressure coupling on hydrogen embrittlement sensitivity of X80 pipeline steel [J]. Welded Pipe Tube, 2023, 46(10): 1
39 牛 辉, 李 拔, 刘 斌 等. MnS夹杂和氢分压耦合作用对X80管线钢氢脆敏感性影响研究 [J]. 焊管, 2023, 46(10): 1
40 Turk A, Pu S D, Bombač D, et al. Quantification of hydrogen trapping in multiphase steels: part II-effect of austenite morphology [J]. Acta Mater., 2020, 197: 253
41 Wen C J, Ho C, Boukamp B A, et al. Use of electrochemical methods to determine chemical-diffusion coefficients in alloys: application to 'LiAI' [J]. Int. Met. Rev., 1981, 26: 253
42 Chen C, Wang Y, Zhang Y C, et al. Study of hydrogen-induced delayed cracking in welding [J]. J. Shanghai Jiaotong Univ., 1984, 18(3): 51
42 陈 楚, 王 锬, 张月嫦 等. 焊接氢致延迟裂纹的研究 [J]. 上海交通大学学报, 1984, 18(3): 51
43 Yao X J, Wang J Q, Zuo J H, et al. Microstructure effects on corrosion and cracking behavior of X52 pipeline steel in H2S environment [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 95
43 姚学军, 王俭秋, 左景辉 等. 微观组织对X52钢抗H2S腐蚀和开裂性能的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 95
44 Lee S J, Ronevich J A, Krauss G, et al. Hydrogen embrittlement of hardened low-carbon sheet steel [J]. ISIJ Int., 2010, 50: 294
45 Momotani Y, Shibata A, Yonemura T, et al. Effect of initial dislocation density on hydrogen accumulation behavior in martensitic steel [J] Scr. Mater., 2020, 178: 318
46 Tian H Y, Xin J C, Li Y, et al. Combined effect of cathodic potential and sulfur species on calcareous deposition, hydrogen permeation, and hydrogen embrittlement of a low carbon bainite steel in artificial seawater [J]. Corros. Sci., 2019, 158: 108089
47 Zhu X, Li W, Zhao H S, et al. Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching & partitioning (Q&P) treated steel [J]. Int. J. Hydrog. Energy, 2014, 39(24): 13031
48 Yuan W, Huang F, Gan L J, et al. Effect of microstructure on hydrogen induced cracking and hydrogen trapping behavior of X100 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 536
48 袁 玮, 黄 峰, 甘丽君 等. 显微组织对X100管线钢氢致开裂及氢捕获行为影响 [J]. 中国腐蚀与防护学报, 2019, 39: 536
49 Wang W L, Chen Y, Zhan X Q, et al. Comparative study on hydrogen embrittlement susceptibility of X60 and X70 pipeline steels and their welded joints [J]. Surf. Technol., 2024, 53(4): 117
49 王万里, 陈 烨, 占先强 等. X60、X70管线钢及其焊接接头氢脆敏感性的对比研究 [J]. 表面技术, 2024, 53(4): 117
50 Li Y X, Zhang R, Liu C W, et al. Hydrogen embrittlement behavior of typical hydrogen-blended natural gas pipeline steel [J]. Oil Gas Storage Transp., 2022, 41: 732
50 李玉星, 张 睿, 刘翠伟 等. 掺氢天然气管道典型管线钢氢脆行为 [J] 油气储运, 2022, 41: 732
51 Zhao Y J. Influence of plastic strain on hydrogen permeation behavior and hydrogen embrittlement susceptibility of X80 pipeline steel [D]. Qingdao: China University of Petroleum (East China), 2018
51 赵玉娇. 塑性应变对X80临氢管线钢氢渗透行为和氢脆敏感性的影响 [D]. 青岛: 中国石油大学(华东), 2018
52 Xue H B, Cheng Y F. Hydrogen permeation and electrochemical corrosion behavior of the X80 pipeline steel weld [J]. J. Mater. Eng. Perform., 2013, 22: 170
53 Yan C Y, Zhang G Y, Liu C Y. Numerical simulation of hydrogen distribution in welded joint of X80 pipeline steel [J]. Trans. China Welding Inst., 2015, 36(9): 103
53 严春妍, 张根元, 刘翠英. X80管线钢焊接接头氢分布的数值模拟 [J]. 焊接学报, 2015, 36(9): 103
54 Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture [J] Mater. Sci. Eng., 1994, 176A: 191
55 Zhang T Y, Chu W Y, Xiao J M. Strain field of hydrogen atoms in iron [J]. Acta Metall. Sin., 1985, 21: 42
55 张统一, 褚武扬, 肖纪美. 氢在铁中的应变场 [J]. 金属学报, 1985, 21: 42
56 Park C, Kang N, Kim M, et al. Effect of prestrain on hydrogen diffusion and trapping in structural steel [J]. Mater. Lett., 2019, 235: 193
57 Jiang W C, Gong J M, Tang J Q, et al. Finite element simulation of the effect of welding residual stress on hydrogen diffusion [J]. Acta Metall. Sin., 2006, 42: 1221
57 蒋文春, 巩建鸣, 唐建群 等. 焊接残余应力对氢扩散影响的有限元模拟 [J]. 金属学报, 2006, 42: 1221
58 Liu W C, Wei B X, Yin H, et al. Finite element analysis of hydrogen permeation in X80 pipeline with corrosion defects under axial strain [J]. Surf. Technol., 2024, 53(8): 84
58 刘韦辰, 韦博鑫, 尹 航 等. 轴向应变作用下含腐蚀缺陷X80管道氢渗透的有限元分析 [J]. 表面技术, 2024, 53(8): 84
59 Slifka A J, Drexler E S, Nanninga N E, et al. Fatigue crack growth of two pipeline steels in a pressurized hydrogen environment [J]. Corros. Sci., 2014, 78: 313
60 Guo W, Zhao W M, Zhang T M, et al. Hydrogen permeation behavior of X80 steel under cathodic polarization and stress [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 353
60 郭 望, 赵卫民, 张体明 等. 阴极极化和应力耦合作用下X80钢氢渗透行为研究 [J]. 中国腐蚀与防护学报, 2015, 35: 353
61 Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 1
61 褚武扬, 乔利杰, 李金许 等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 1
62 Zapffe C A, Sims C E. Hydrogen embrittlement, internal stress and defects in steel [J]. Am. Inst. Mining Metall. Petrol. Eng., 1941, 145: 225
63 Chu W Y, Gao K W, Huang Y Z, et al. Initiation of fissure from hydrogen blister in rail steel [J]. Corrosion, 2000, 56: 1046
64 Xie D G, Wang Z J, Sun J, et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface [J]. Nat. Mater., 2015, 14: 899
65 Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Trans., 1972, 3: 441
66 Ferreira P J, Robertson I M, Birnbaum H K. Hydrogen effects on the interaction between dislocations [J]. Acta Mater., 1998, 46: 1749
67 Huang L C, Chen D K, Xie D G, et al. Quantitative tests revealing hydrogen-enhanced dislocation motion in α-iron [J]. Nat. Mater., 2023, 22: 710
68 Djukic M, Bakic G, Šijački-Žeravčić V, et al. The synergistic action of HELP and HEDE mechanisms of hydrogen embrittlement in steels [A]. Invited Talk-International Symposium: “HYDROGENIUS, I 2CNER and HydroMate Joint Research Symposium on HydrogenMaterials Interactions 2021”[C]. Fukuoka, Japen, 2021
69 Xue J L, Guo W, Xia M S, et al. In-depth understanding in the effect of hydrogen on microstructural evolution, mechanical properties and fracture micro-mechanisms of advanced high-strength steels welded joints [J]. Corros. Sci., 2024, 233: 112112
[1] 王慧玲, 明洪亮, 王俭秋, 韩恩厚. 掺氢天然气管线钢氢渗透行为研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 249-260.
[2] 赵杰, 徐广旭, 张烘玮, 李敬法, 吕冉, 王嘉龙, 闫东雷. X80掺氢天然气管道的氢脆与腐蚀耦合作用研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 407-415.
[3] 刘天乐, 韦博鑫, 付安庆, 苏航, 陈廷枢, 王超明, 王邃. 掺氢环境下X80管线钢气相氢损伤研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[4] 陈锴, 杜一帆, 徐浩昀, 吕良, 党桂铭, 王玉金, 郑树启. X80管线钢氢渗透行为及氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[5] 李新城, 李兆南, 王海锋, 徐云泽, 王明昱, 甄兴伟. DH36海洋工程钢焊接结构的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 416-422.
[6] 彭浩, 程晓英, 李晓亮, 王兆丰, 蔡贞祥. 高强度低合金钢中V和Nb对氢陷阱的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.
[7] 姚婵, 陈健, 明洪亮, 王俭秋. 管线钢氢渗透行为的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(2): 209-219.
[8] 马成, 崔彦发, 张青, 赵林林, 王立辉, 熊自柳. 中锰TRIP钢氢致开裂性能研究现状与进展[J]. 中国腐蚀与防护学报, 2022, 42(6): 885-893.
[9] 王保杰,栾吉瑜,王士栋,许道奎. 镁合金应力腐蚀开裂行为研究进展[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[10] 柯书忠, 刘静, 黄峰, 王贞, 毕云杰. 预应变对DP600钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2018, 38(5): 424-430.
[11] 郭强, 陈长风, 李世瀚, 于浩波, 李鹤林. 冷焊修复层在H2S环境下的开裂行为研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 167-173.
[12] 郭望,赵卫民,张体明,杜天海,王勇. 阴极极化和应力耦合作用下X80钢氢渗透行为研究[J]. 中国腐蚀与防护学报, 2015, 35(4): 353-358.
[13] 史显波, 王威, 严伟, 单以银, 杨柯. M/A组元对高强度管线钢抗H2S性能的影响[J]. 中国腐蚀与防护学报, 2015, 35(2): 129-136.
[14] 张体明, 赵卫民, 郭望, 王勇. 阴极保护下X65钢在模拟海水中的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
[15] 王斌, 周翠, 李良君, 胡红梅, 朱加祥. X100管线钢焊接接头抗HIC性能研究[J]. 中国腐蚀与防护学报, 2014, 34(3): 237-242.