中国腐蚀与防护学报, 2025, 45(2): 296-306 DOI: 10.11902/1005.4537.2024.218

临氢关键材料服役行为研究专刊

掺氢天然气环境下管线钢氢致疲劳裂纹扩展研究进展

樊嘉骏1, 董立谨,1, 马成2, 张兹瑜3, 明洪亮3, 韦博鑫3, 彭庆4, 王勤英1

1.西南石油大学新能源与材料学院 成都 610500

2.河钢集团材料技术研究中心 石家庄 050000

3.中国科学院金属研究所 沈阳 110016

4.中国科学院力学研究所 北京 100190

Research Progress on Hydrogen-assisted Fatigue Crack Growth of Pipeline Steels in Hydrogen-blended Natural Gas Environment

FAN Jiajun1, DONG Lijin,1, MA Cheng2, ZHANG Ziyu3, MING Hongliang3, WEI Boxin3, PENG Qing4, WANG Qinying1

1.School of New energy and Materials, Southwest Petroleum University, Chengdu 610500, China

2.Materials Technology Research Institute, HBIS Group, Shijiazhuang 050000, China

3.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

4.Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

通讯作者: 董立谨,E-mail:ljdong89@163.com,研究方向为材料环境敏感断裂

收稿日期: 2024-07-22   修回日期: 2024-09-05  

基金资助: 国家自然科学基金.  52474082
国家自然科学基金.  52001264

Corresponding authors: DONG Lijin, E-mail:ljdong89@163.com

Received: 2024-07-22   Revised: 2024-09-05  

Fund supported: National Natural Science Foundation of China.  52474082
National Natural Science Foundation of China.  52001264

作者简介 About authors

樊嘉骏,男,2001年生,硕士生

摘要

天然气掺氢输送是实现氢能长距离、低成本、大规模输运的重要途经,但管线因疲劳载荷作用可能发生氢致疲劳损伤,严重威胁掺氢天然气管线的服役安全。因此,本文首先介绍了管线钢氢致疲劳裂纹扩展的机理和模型,重点论述了微观组织结构及焊接、载荷和服役环境等因素对掺氢天然气环境下管线钢氢致疲劳裂纹扩展的影响,最后对该领域的未来研究方向提出了展望。

关键词: 管线钢 ; 天然气掺氢 ; 氢致疲劳裂纹扩展 ; 微观组织结构

Abstract

Hydrogen-natural gas blending is an important way to achieve long-distance, low-cost, and large-scale transportation of hydrogen energy. However, hydrogen-induced fatigue damage of pipelines may occur due to the simultaneous presence of fatigue loading and hydrogen, hence, seriously threatening the service safety of hydrogen-blended natural gas pipelines. Therefore, studying the role of hydrogen in pipeline steel and clarifying the mechanisms and influencing factors of hydrogen-assisted fatigue crack growth (HA-FCG) of pipeline steel can provide a basis for optimizing the performance and conducting risk assessment of HA-FCG of pipeline steel. In this paper, research progress on HA-FCG of pipeline steels in hydrogen-blended natural gas environment was summarized. Firstly, the mechanisms and models of HA-FCG were introduced. Secondly, the effect of microstructure, welding, load and service environment on HA-FCG of pipeline steels in hydrogen-blended natural gas environment was reviewed. Finally, the research directions of this field in future were discussed.

Keywords: pipeline steel ; hydrogen-natural gas blending ; hydrogen-assisted fatigue crack growth ; microstructure

PDF (5218KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

樊嘉骏, 董立谨, 马成, 张兹瑜, 明洪亮, 韦博鑫, 彭庆, 王勤英. 掺氢天然气环境下管线钢氢致疲劳裂纹扩展研究进展. 中国腐蚀与防护学报[J], 2025, 45(2): 296-306 DOI:10.11902/1005.4537.2024.218

FAN Jiajun, DONG Lijin, MA Cheng, ZHANG Ziyu, MING Hongliang, WEI Boxin, PENG Qing, WANG Qinying. Research Progress on Hydrogen-assisted Fatigue Crack Growth of Pipeline Steels in Hydrogen-blended Natural Gas Environment. Journal of Chinese Society for Corrosion and Protection[J], 2025, 45(2): 296-306 DOI:10.11902/1005.4537.2024.218

氢气是一种无色无味无毒、燃烧效率高且绿色环保的能源,被称为21世纪最有发展潜力的清洁能源[1]。提高氢气的利用率,推动氢能产业的发展,是实现我国双碳目标的有效途径[2,3]。将氢气以一定的比例掺入天然气中,利用成熟的天然气管线可以实现氢能长距离、低成本、大规模输运[1,3]。天然气掺氢技术不仅能够降低天然气利用过程中的碳排放强度还能有效解决风电/光伏等消纳问题,保障国家能源安全[4]

天然气掺氢后,输气管线要长时间暴露在高压富氢的环境当中,因此天然气管道掺氢输送面临的挑战之一为管线钢在氢环境的相容性。目前,在掺氢输送管道选材方面,国外已有相应的标准规范,例如,美国机械工程师学会规范ASME B31.12-2023中已列出的材料可以直接使用,如A36、A181和A350等,对于API 5L X65及更高级别的管线钢规定最大工作应力不超过10 MPa;欧洲工业气体协会(EIGA) IGC Doc 121/14-2014中要求输氢管线钢的最大硬度约为22 HRC或250 HB。该硬度极限近似等于约116 ksi (800 MPa)的抗拉强度极限,焊缝的硬度也应低于22 HRC或250 HB。国内也发行了相应的标准,例如,天然气掺氢混气站技术规程中要求掺氢天然气管线材质和附件应符合GB/T 50028的有关规定;GB/T 34542-2018中并未对输氢管线选材做出具体分类,但是对输氢管材的评价提供了试验方法。

国外氢气输送管道发展较早,技术相对成熟,输氢压力一般为2~7 MPa,管道选材主要包括碳钢及API 5L X系列管线钢,如ASTM A53、ASTM 106、X42/X52/X60管线钢等,最高钢级为X60;国内掺氢天然气管道的输氢压力一般在4 MPa以下,多采用L245、20钢等低钢级管材[5],X70和X80钢多用于煤制气管线[6],但更高钢级管线钢的适用性尚不清楚,缺乏对掺氢天然气输送管道材料硬度、强度和韧性的具体要求。

管线钢在服役过程中不可避免地要受到疲劳载荷。疲劳载荷一方面来自管内输送介质压力的波动,另一方面来自管线外的变动载荷,如埋地管线上车辆引起的振动、沼泽地管线浮力的波动、沙漠管线流沙的迁移、穿越管段的卡曼振动等[7,8]。掺入天然气中的氢气会在管线钢表面吸附并分解,以原子氢的形式进入钢材内部[9,10],并被管线钢内部的氢陷阱捕获[9],在疲劳载荷的作用下,管线钢内部的缺陷处会萌生微小裂纹,在氢的作用下疲劳裂纹加速扩展的现象称为氢致疲劳裂纹扩展(HA-FCG)[11]。临氢环境中管道运输系统完整性管理需要考虑管材的疲劳裂纹扩展性能[6]。国内外天然气管线掺氢工程研究时间较短,大多数国家从21世纪初才开展相应的示范性工程项目[5],因此掺氢天然气管线的服役时间也较短,目前缺乏相关的失效案例及数据,但是原有天然气管线的疲劳失效案例却时有发生。例如,美国太平洋燃气电力公司运营管理的132天然气管线因疲劳裂纹扩展导致管线破裂发生爆炸[12];中石油西南油气田分公司富加输气站Ф720输气管线因管输压力频繁变化,发生疲劳失效,引发天然气泄漏从而发生管外爆炸[13]。欧洲输气管道事故数据组织(EGIG)统计表明,由管道疲劳破坏造成的穿孔和破裂分别占事故总数的29%、17%,并且据我国压力管道事故调查表显示,管道疲劳裂纹导致的管道泄漏占事故总数的62.5%[14]。因此,预计氢的加入会进一步提高天然气管线疲劳失效的风险。因此研究氢在管线钢中的作用机制,明确管线钢HA-FCG的机理和影响因素,可以为管线钢HA-FCG性能的优化和风险评估提供基础。本文系统综述了掺氢天然气环境下管线钢HA-FCG机理和影响因素的研究进展,并对目前管线钢HA-FCG研究存在的不足提出了一些亟待解决的问题。

1 管线钢氢致疲劳裂纹扩展的机理和模型

1.1 氢致疲劳裂纹扩展机理

目前针对HA-FCG的理论通常基于被学者广泛接受的氢致弱键[15]、氢增强局部塑性[16]、氢增强应变诱导空位[17]、吸附诱导位错发射[18,19]等理论,4种具有代表性的HA-FCG机理的示意图见图1

图1

图1   HA-FCG机理示意图[23]

Fig.1   Schematic illustration of mechanism models of HA-FCG: (a) ductile fatigue striation formation model in air, (b) hesfcg model, (c) hydrogen-induced cyclic cleavage model, (d) hydrogen-induced void coalescence model, (e) brittle striation formation model[23]


(1) Murakami等[20]基于氢增强局部塑性机制提出了氢增强连续疲劳裂纹扩展机制。该机制认为,载荷的增加促使裂纹尖端扩散的氢聚集到高静水应力区域,高度积聚的溶质氢局部增强了该区域的滑移变形,使得裂纹形状保持尖锐。(2) Marrow等[21]基于氢致弱键机制于1992年提出了氢诱导循环解理机制。该机制同样认为,载荷的增加促使裂纹尖端扩散的氢聚集到高静水应力区域,位错从裂纹尖端发出,裂纹尖端开始钝化,并在裂纹尖端前方形成了具有高位错密度的高静水应力场。随后,扩散的氢原子被束缚在应力场中,但高度积聚的氢原子降低了晶格的内聚能,促进解理断裂。该机制中,尽管裂纹的开裂机制是原子脱聚,不伴随裂纹尖端的塑性变形,但仍需要在裂纹尖端形成塑性应变场以实现高浓度的氢积聚。(3) Nishikawa等[22]根据氢增强应变诱导空位机制提出了氢诱导孔洞聚结机制。该机制假设在加载过程中,氢与裂纹尖端塑性变形区相互作用会产生高密度的微孔,并发生聚合,从而加速裂纹扩展。(4) Birenis等[23]提出了脆性条纹形成机制。该机制提出,随着加载周期的开始,裂纹尖端以交替滑移机制发生钝化,并从裂纹尖端发射位错,在主裂纹尖端前方形成高静水应力场,该应力场因化学势较低,有利于氢的聚集。在临界拉应力和临界氢浓度的共同作用下,塑性变形受到抑制,裂纹尖端形成解理微裂纹,主裂纹与解理微裂纹结合,推动主裂纹向前扩展直至扩展停止。该机制与氢诱导循环解理机制相似,都认为裂纹扩展的过程是解理断裂。但是该机制认为螺位错迁移率的降低在诱导解理断裂中起着主要作用,而非原子间键能的削弱。

材料的微观组织结构、载荷、环境等因素都会影响管线钢的疲劳裂纹扩展[24~27]。在大多数的情况下,HA-FCG的发生并不是某一种机制的单独作用,而是两种或两种以上机制的共同作用,迄今为止尚未形成统一的解释[11,28,29]。因此,掺氢天然气环境下管线钢的HA-FCG的机制还需要进一步的深入研究。

1.2 预测模型

氢环境中裂纹扩展过程需要考虑3个问题:(1)裂纹尖端应力场、变形场与内部氢浓度的关系;(2)HA-FCG发生的机制类型;(3) 氢对裂纹扩展的推动力与阻力的影响[30]。近年来,相场模型和内聚区模型为HA-FCG的模拟提供了重要途径[29,31]

力学领域的相场断裂模型由Griffith断裂理论扩展而来,采用长度尺度参数将尖锐裂纹正则化为扩散裂纹[32]。Griffith理论将断裂描述为材料中储存的能量与创造两个新表面所需的能量之间的竞争,当材料中储存的能量足以克服材料韧性Gc时,就会发生裂纹扩展[33]。相场模型通过引入额外的连续场变量,将离散的裂纹表面替换为一片受损材料的模糊区域,并能准确地捕捉裂纹的形核、转向、分支和合并。这样无需明确跟踪裂纹表面,就能实现强大的计算[34]。建立基于相场模型的HA-FCG预测模型需要考虑有关氢与裂纹尖端的相互作用的模型和函数,例如变形-扩散-损伤耦合模型、研究材料内部氢扩散的Fick第一定律、氢作用的韧性退化函数以及氢损伤函数等[31,33]。Golahmar等[31]基于相场模型提出了变形-扩散-损伤耦合模型能够预测任意加载模式和试样几何形状下的疲劳裂纹成核和生长。Cui等[33]将断裂和疲劳的相场模型、应力辅助氢扩散以及循环和氢贡献的韧性退化公式相结合,提出了一种预测氢致疲劳的新模型,该模型仅将材料的韧性与含氢量的关系及其在空气中的疲劳响应作为输入,就能够预测HA-FCG行为。

在内聚区模型中,将材料界面或裂纹尖端周围的原子结构看作是由内聚区组成的。这个内聚区是一个非常薄的区域,位于裂纹尖端或者界面上,其中存在着一定的原子结构变化,从而导致了局部的能量吸收和塑性变形,这种变化可能包括原子键的断裂、重新形成以及原子位移等,因此内聚区模型与氢致弱键机制吻合较好。内聚区模型的主要优点是可以同时考虑裂纹的产生和扩展。由于内聚模型本质上是现象学模型,因此可以调整内聚参数以符合所研究材料的破坏行为,而无需明确表示特定的裂纹生长机制[35]。建立预测模型所用的氢扩散模型和内聚区模型如下所示:

DLDedCLdt=DL2CL-DLCLRTV__HσH
D=0tmaxDc, Dmdt

式中,De为有效扩散系数,DL为晶格扩散系数,CL为晶格的氢浓度,R = 8.3145 J·mol-1·k-1为通用气体常数,T为绝对温度,V__H为固溶体中氢的部分摩尔体积,σH为静水应力,D为总损伤率,Dc为循环损伤率,Dm为单调损伤率。

Fernández-Sousa等[36]将变形-扩散耦合多陷阱模型与循环损伤的内聚区模型相结合,模拟了HA-FCG。他们通过上述模型量化了加载频率的作用,发现加载频率与有效扩散率的比值决定了疲劳裂纹扩展行为,并且增加不参与断裂过程的有益捕获位点的密度会降低疲劳裂纹的增长速度。Zheng等[29]提出了一种预测HA-FCG的循环内聚区模型,该模型考虑了内聚强度和累积内聚长度的退化,以反映HE对累积内聚长度的影响。

目前,相场模型和内聚区模型在管线钢HA-FCG的应用研究相对较少,仅有部分学者的预测模型在API 5L X42、X52和X100管线钢中有所应用[29,37],并且由于模型公式的限制,大多数模型将氢气压力、氢浓度、氢扩散速率、加载频率和应力比等参数作为影响因素,而温度、杂质气体等环境因素并没有作为变量考虑到预测模型中,缺乏一定的工程应用性,因此仍需对管线钢的HA-FCG预测模型进行研究。

2 掺氢天然气环境下管线钢氢致疲劳裂纹扩展的影响因素

掺氢天然气环境下管线钢的HA-FCG受到材料、载荷和环境等多方面的影响[38]。目前学者主要从微观组织结构、载荷因素和环境因素等方面对管线钢HA-FCG行为进行研究。

2.1 微观组织结构及焊接

强度不同的管线钢的微观组织结构存在差异,X42、X52、X60管线钢的微观组织为铁素体/珠光体[39,40],X70管线钢的微观组织为铁素体/珠光体/贝氏体,而X80和X100管线钢的微观组织一般为铁素体/贝氏体[41~43]。管线钢中的显微组织、位错、晶界、夹杂物等位置都有可能成为捕获氢原子的氢陷阱[44,45]图2为氢在管线钢内部扩散的不同阶段示意图。该部分主要从铁素体、珠光体、贝氏体和夹杂物等方面综述微观组织结构对管线钢HA-FCG的影响。

图2

图2   氢在管线钢内部扩散的不同阶段[30]

Fig.2   Different stages of hydrogen diffusion within pipeline steel: (a) hydrogen is dissociated into h atoms in the pipelines and adsorbed to the inner surface of the metals, (b) atoms or regenerated hydrogen molecules degrade metal lattices, (c) hydrogen breaks the lattices and evolves into micro-crack propagation, (d) macroscopically visible cracks appear[30]


2.1.1 铁素体

铁素体是管线钢中最常见的显微组织,按照形状可以分为针状铁素体(AF)和多边形铁素体。其中AF具有高密度的位错,易捕获氢原子。AF与管线钢中的珠光体和贝氏体等组织相比具有优异的抗氢致开裂性能[46]。而多边形铁素体通常晶粒尺寸较大,位错密度较低,氢捕获能力较差,因此当管线钢中多边形铁素体的比例增大时,氢扩散系数增大,氢陷阱数量减少[47]。Cheng等[48]将一定量的Ce加入到X80管线钢当中,表明Ce能够细化钢中的夹杂物,促进了AF的生成并降低了容易产生应力集中的马氏体/奥氏体相的体积分数;具有随机取向的AF晶界和AF与板条贝氏体的高角度晶界不仅能阻碍位错的运动,提高管线钢的强度,还能阻碍裂纹扩展[49]。此外,铁素体晶粒尺寸也会对管线钢的开裂敏感性产生影响,当铁素体晶粒尺寸增大时,作为可逆氢陷阱的晶界数量减少,扩散进入管线钢中的氢含量减少,氢致开裂敏感性降低[50,51]。因此,细小的AF主要是通过大量的捕获氢,阻碍氢的扩散以及裂纹扩展来抵抗管线钢的HA-FCG。

2.1.2 珠光体

珠光体组织多在X42、X52、X60和X70等低强度和中高强度管线钢中出现[50~52],其内部的铁素体/渗碳体层和铁素体/珠光体界面影响氢的扩散和捕获以及裂纹的萌生[26]。由于珠光体中铁素体/渗碳体层与氢的高结合能(66.3 kJ/mol)[53],使得其成为了不可逆氢陷阱,同时铁素体/珠光体界面也会提供大量的氢陷阱[26],阻碍氢在钢中的自由扩散。研究表明,氢在管线钢中扩散路径的曲折性会对管线钢的有效氢扩散系数造成影响[52]。在带状铁素体/珠光体结构中,珠光体晶粒中较低的扩散率会导致氢优先通过铁素体晶粒进行扩散,这种曲折的扩散路径会导致有效氢扩散系数的取向依赖性[54]

虽然珠光体可能成为氢致微裂纹萌生的优先位点[55],但是管线钢中独特的铁素体/珠光体带状结构能起到阻碍或促进裂纹扩展的作用。Ronevich等[56]在氢压P = 21 MPa、频率f = 1 Hz、应力比R = 0.5的实验条件下研究了X65管线钢的HA-FCG行为,结果表明当裂纹垂直于带状珠光体时裂纹扩展速率明显较低,这归因于带状珠光体阻碍裂纹扩展和氢扩散的协同效应。而平行于裂纹扩展路径的珠光体片层会发生脆性分层断裂,显著促进裂纹扩展(图3)。因此珠光体组织表现出抑制/增强HA-FCG的双重作用[57, 58]

图3

图3   气态氢条件下两种疲劳裂纹通过珠光体晶粒的扩展模式示意图[57]

Fig.3   Schematic illustrations of the two fatigue crack propagation modes through pearlite grains under the presence of gaseous hydrogen[57]: (a) cracking-mode transecting ferrite/cementite lamellar aligned nearly perpendicular to the crack-plane (pearlite tearing, pt), (b) delamination-type fracture along the ferrite/cementite interfaces lying almost parallel to the crack-plane (pearlite delamination, PD)


2.1.3 贝氏体

管线钢中的贝氏体组织按照形状可以分为粒状贝氏体和板条贝氏体。贝氏体的氢捕获效率比AF低,但高于珠光体[46]。粒状贝氏体由铁素体基体和M/A岛组成,具有高碳含量、高硬度和高位错密度的M/A岛具有很强的氢捕获能力,当氢浓度超过临界值时,会引起局部的应力集中导致裂纹的产生和扩展,通常裂纹会沿着M/A岛和铁素体基体的界面扩展[59]。与粒状贝氏体相比,板条贝氏体的板条边界能够捕获更多的氢,进而导致板条贝氏体中氢浓度增加,促使贝氏体板条边界分离。裂纹在氢和载荷的作用下持续扩展[60]。因此含有板条贝氏体组织的管线钢要比含有粒状贝氏体和铁素体组织的管线钢脆性开裂敏感性更高[60,61]

2.1.4 夹杂物

管线钢中夹杂物的类型相当复杂,主要有MnS、SiO2、(Ti、Nb、V)(C、N)、MgO和一些多元素夹杂物(Mn-S-Al-Nb-N)等[62~64]。夹杂物对掺氢天然气环境下管线钢HA-FCG的影响主要与其大小、含量和形状有关。尺寸较大的夹杂物周围会提供许多的氢捕获位点,极易成为裂纹形核的中心[65]。同时当管线钢中夹杂物的含量较高时,也会增强对氢的捕获作用,在钢中产生大量的裂纹形核位点,促进裂纹扩展[66,67]。夹杂物按形状主要分为球形、矩形和针状。球形夹杂物与氢的结合能较低只能捕获少量的氢,而矩形和针状的夹杂物的边缘比较锋利,会在附近产生较大的错配应变,导致应变能增加,能捕获更多的氢,因此更容易发生裂纹形核[62,68]

夹杂物之间的距离和尺寸也会对HA-FCG产生影响,Mostafijur等[69]在20 mA/cm2的恒定电流密度下研究电化学充氢对X70钢的影响,观察到夹杂物之间的距离越短、尺寸越小,裂纹在夹杂物之间的扩展就越容易。但是夹杂物对HA-FCG的作用并非都是负面的,Huang等[70]和Liu等[71]研究表明氢致裂纹不会在SiO2上产生。当亚微米富Nb夹杂物均匀地分布在钢中时,氢捕获效应较强,有效阻碍氢自由扩散,从而提高了钢对HA-FCG的抵抗力[72]。综上所述,控制管线钢中夹杂物的尺寸、分布以及形状可以有效地提高管线钢的抗HA-FCG能力。

2.1.5 焊接组织

管线钢焊接接头可以分为母材、熔合区、热影响区和焊缝。因微观结构不同,这些位置的HA-FCG表现出明显差异[73]。Gan等[74]研究了X100管线钢焊接接头的氢致开裂敏感性,当母材和焊缝中夹杂物的尺寸、类型和成分均相似时,夹杂物对母材和焊缝的氢致开裂敏感性是相同的。疲劳裂纹会优先在硬质相中扩展,当母材微观结构为铁素体/珠光体时,由于珠光体硬度大于铁素体,裂纹在珠光体中扩展很快,而铁素体相因其高的延展性具有良好的抵抗裂纹扩展的能力[73, 75]。此外,焊接过程中容易产生成分偏析,而成分不均匀的组织易成为疲劳裂纹优先扩展的路径[75]。残余应力对焊接接头的HA-FCG也有影响,残余压应力使得有效的应力强度因子范围ΔK和最大应力强度因子Kmax降低,裂纹扩展的驱动力衰减,从而降低疲劳裂纹扩展速率(da/dN)[76,77]

Huang等[78]在10 MPa的天然气/氢气混合物中研究了氢气对X70钢焊接接头HA-FCG的影响,发现母材和焊缝中的细小的AF具有较高的位错密度,能够捕获较多的氢。而热影响区中的粗贝氏体组织更容易受到氢的影响,使得热影响区的da/dN明显大于母材和焊缝。此外,焊接接头处不同区域之间的组织分布不存在较为明显的边界,难以针对不同区域进行研究。在进行疲劳裂纹扩展实验时,可以对不同区域分别取样[77],研究焊接接头不同区域间da/dN的差异。同时还需要考虑焊接过程中产生的残余应力的影响,利用调整柔度比(ACR)方法以消除残余应力造成的裂纹闭合现象[76],对实验数据进行校正。

针对热影响区,还可以采用焊接热模拟技术,通过模拟实际焊接过程中的温度变化得到模拟焊接热影响区试样,并在临氢环境中进行实验,可以为实际焊接热影响区试样的研究提供一定的参考[79,80]。Nguyen等[80]通过焊接热模拟技术再现了实际焊接热影响区焊缝子区域的微观结构,并采用慢应变速率拉伸实验研究了X70管线钢焊缝对氢气的敏感性,结果表明,焊缝各区域对氢气的敏感性按照焊缝、模拟细晶热影响区、模拟粗晶热影响区和母材的顺序依次增加。

2.2 载荷因素

2.2.1 应力比

应力比(R = Kmin/Kmax)是影响管线钢HA-FCG性能的重要参数,R与最大应力强度因子Kmax和应力强度因子范围ΔK的关系[81]如下所示:

ΔK=Kmax 1-R

Ronevich等[82]研究了多种X100管线钢焊缝的HA-FCG行为,其中残余应力会使实际应力比R偏移0.5,甚至出现负应力比的情况,负R条件会大大降低da/dN。随着R的增大,da/dN也会随之增大,但是R与da/dN之间的关系并非是线性的。Cialone和Holbrook[83]研究表明,在低应力比(R < 0.4)下,da/dN与氢气中的应力比无关;而在较高的应力比下,氢气中的da/dN增加,但是这种增加主要归因于Kmax达到了氢气中的断裂阈值。

氢气中裂纹闭合也会影响da/dN,裂纹闭合可以通过腐蚀产物、第二相颗粒或裂纹断口表面凹凸不平处的闭合来延缓裂纹扩展[11,84],因此在计算裂纹尖端处的有效应力强度因子范围ΔKeff时,需要考虑不同应力比R条件下裂纹闭合的作用。应力比R主要是通过改变Kmax来影响管线钢的da/dN,当应力强度因子范围ΔK不变时,应力比R越大裂纹开始扩展时对应的Kmax就越大,有效裂纹扩展的驱动力ΔKeff也就越大,da/dN就越高。

2.2.2 载荷频率

疲劳载荷的频率直接影响氢环境下材料断裂的性质,特别是在低、高载荷频率下,其疲劳行为是不同的[38]。Fassina等[85,86]研究了载荷频率对管线钢在氢环境下的疲劳行为发现,氢能够在低频率下迁移到裂纹尖端,从而增强了氢对裂纹扩展的影响。在加载频率较低时,一个加载周期的时间越长,氢能够扩散到裂纹尖端更深处。根据氢诱导循环解理机制,氢气在裂纹尖端区域渗透越深就可能会使得解理断裂的裂纹推进时间更长,从而导致da/dN增加[87]。Drexler等[41]在氢气压力P = 34 MPa、载荷频率f = 0.01、0.1和1 Hz、载荷比R = 0.5的条件下,研究了X70管线钢的裂纹扩展行为,在0.01 Hz的加载频率下da/dN达到了最大。Alvaro等[88]在电化学充氢条件下研究了载荷频率(f = 0.1、1和10 Hz)对Fe-3%Si钢和X70钢疲劳裂纹扩展的影响也得出了相似的结论,发现频率越低,氢气对裂纹扩展的加速作用就越明显,这种加速作用与从穿晶断裂机制到准解理断裂机制的转变有关。

研究表明氢分压相同时载荷频率的降低对裂纹扩展的促进作用会达到饱和,而氢分压会影响da/dN增加的频率依赖性[87,89]。Yamabe等[90]研究表明当氢压P ≤ 10 MPa时,随着载荷频率的减小,氢对da/dN的加速作用逐渐增大,但是当加载频率降低到0.001 Hz时,da/dN的加速作用瞬间减小直至消失。当氢压P ≥ 45 MPa,加载频率降低到0.001 Hz时,da/dN的加速作用并未减小。值得注意的是,在氢压P = 45 MPa,f = 0.001 Hz时,da/dN的加速作用达到了上限。但当氢压增加到90 MPa,f ≤ 0.001 Hz时,da/dN持续增长,加速作用不存在上限。

2.3 环境因素

2.3.1 氢压

管线钢内部施加的氢气压力影响着管线钢的裂纹扩展速率和裂纹萌生[38]。An等[91]和Slifka等[92]研究了氢压对X80、X52和X100管线钢HA-FCG的影响,不同氢压下的da/dN与ΔK关系曲线如图4所示。结果表明,da/dN随着氢压的增大而增大,对于X100和X80而言,da/dN的增加与氢压的增大有关,而氢压与X52钢da/dN之间的相关性尚不清楚,这可能与材料之间的微观结构差异有关[91]。同时有学者认为氢压的增大对缩短疲劳寿命的影响要明显大于对疲劳裂纹扩展的影响,当氢气压力从0.2 MPa增加到8.0 MPa时,da/dN增加了3倍;然而,疲劳寿命减少了约90%[91]。关于低氢压对管线钢裂纹扩展的影响与高氢压情况存在一定的差异,León-Cázares等[93]在氢分压为0.1和20.7 MPa的条件下研究了X52钢的裂纹萌生和扩展行为,较低的氢压0.1 MPa下,da/dN会增加而氢气对裂纹萌生几乎没有影响,但是随着压力增大到207 MPa,氢对疲劳过程的影响增大,裂纹萌生的循环次数降低,这与An等[91]的研究结果一致。

图4

图4   不同氢压下的疲劳裂纹扩展速率与ΔK的关系曲线[38,91]

Fig.4   Relationship Curve between FCGR and ΔK in air and different hydrogen pressure: (a) FCGR data for API X100 steel, (b) FCGR data for API X52 steel, (c) FCGR data for X80 steel[38,91]


同时氢压对疲劳裂纹扩展的作用还受到应力强度因子范围ΔK的影响,Drexler等[41]研究了氢气压力对X70管线钢da/dN的影响,结果表明,当ΔK介于7~15 MPa·m1/2时,氢气的影响尤为明显,即在较低的ΔK下,氢压的增加促进da/dN增长的效应更加明显,而在更高的ΔK下,氢压的作用会迅速达到饱和[94]。而当ΔK足够低时,HA-FCG的曲线会与空气中的疲劳裂纹扩展曲线重合,氢气压力的变化不会影响这一现象。在5.5 MPa的氢气压力下,可以观察到曲线的重合,但是在34 MPa的氢气压力下,低da/dN的数据无法获取,无法确定HA-FCG曲线与空气中疲劳裂纹扩展曲线的重合位置关系。因此有关氢气压力对管线钢HA-FCG的影响,还需要进一步的研究和讨论。

2.3.2 杂质气体

在实际天然气管道运输过程中,环境里存在天然气的主要成分CH4以及CO、CO2和O2等杂质气体,这对氢在管线钢中的扩散行为会产生影响。目前,研究CH4影响氢气在管线钢表面吸附与解离的工作相对较少。Staykov等[95]通过密度泛函理论(DFT)研究了CH4对氢气在Fe(100)表面解离的影响,发现由于CH4具有较高的能垒和正吸附能,并不会影响氢气的解离作用。Sun等[96]的研究也得出了同样的结果,但是他们发现CH4分压的升高会降低氢气吸附的热力学趋势,从一定程度上抑制氢气的吸附。

杂质气体可以通过与氢气争夺钢材表面吸附位点的方式来影响氢渗透行为,第一性原理研究表明[97,98],CO在Fe表面的吸附位点比氢气具有更低的吸附能,这表明CO会优先吸附在钢表面,CO的预吸附抑制了氢气的吸附。此外,预吸附CO的表面会失去电子密度,从而增加氢气的解离能垒,抑制氢气的解离[97],并且O2也能够通过物理吸附的方式占据表面活性位点来抑制氢的进入[99],因此CO和O2可以起到一定的抑制氢致开裂的作用。

但是有关CO2影响管线钢HA-FCG的研究中存在一定的争论。Zhang等[100]研究表明CO与CO2相比吸附作用更强,能够更好的抑制管线钢表面氢气的吸附,提高管线钢的抗氢脆性能。因为CO2与氢气的吸附能相近,所以无法通过占据吸附位点的方式来抑制氢渗透[100]。但有学者利用DFT研究发现,吸附在铁表面的CO2可以降低氢气的吸附能加强对氢气的吸附,并显著加快溶解到材料次表层的解离氢的溶解速率,导致解离的氢从钢表面迅速迁移到内部,使得钢中的溶解氢含量增加,并在裂纹尖端处聚集,提高管线钢的裂纹扩展速率[27]

3 结论与展望

综上所述,HA-FCG是管线钢输送氢气过程中需要考虑的重要因素。目前,在研究微观组织结构、载荷因素和环境因素对掺氢天然气环境下管线钢HA-FCG的影响方面也取得了一定进展,但是仍然存在一些需要解决的问题。在HA-FCG机理和模型方面,有关HA-FCG的多机理交互作用的研究较少,并且目前的研究模型多为实验模型,尚未将温度、杂质气体等环境因素考虑进模型中,缺乏一定工程实用性,因此还需要进一步建立系统的模型和提出新的研究机理来解释HA-FCG行为。在影响因素方面,关于应力比、应变速率和加载波形等载荷因素以及温度、湿度等环境因素的研究还十分缺乏,仍需要进行大量的实验研究来提高管线钢在不同服役环境下的适用性。在研究对象方面,针对在役管线或含缺陷的管材的HA-FCG研究较少。此外,焊接金属材质以及焊接工艺的不同都会使得焊接接头的微观组织出现明显差异,从而影响管线钢焊接接头的HA-FCG性能,因此还需要深入研究。

参考文献

Liu F, Yang H W, Deng F J.

Hydrogen embrittlement behavior of X65 pipeline steel for transmitting hydrogen-enriched compressed natural gas

[J]. Oil Gas Storage Transp., 2024, 43: 289

[本文引用: 2]

刘 方, 杨宏伟, 邓付洁.

掺氢天然气输送用X65管线钢的氢脆行为

[J]. 油气储运, 2024, 43: 289

[本文引用: 2]

Wei R C, Yang Z W, Chen Y F, et al.

Study on the influence of gas phase impurities on hydrogen embrittlement sensitivity of L245 pipeline steel in hydrogen environment

[J]. Mech. Eng., 2024: 1, doi: 10.6052/1000-0879-24-118

[本文引用: 1]

魏仁超, 杨志文, 陈迎锋 .

气相杂质对临氢环境中L245管线钢氢脆敏感性的影响研究

[J]. 力学与实践, 2024: 1, doi: 10.6052/1000-0879-24-118

[本文引用: 1]

Wu X, Tan M Q, Zhang Q R, et al.

Advancements in investigating crack propagation in pipeline steel base metal and welded joints exposed to hydrogen-blended natural gas

[J]. J. Saf. Environ., 2024, 24(8): 3063

[本文引用: 2]

吴 瑕, 谭旻倩, 张沁蕊 .

掺氢天然气管道本体及焊缝裂纹扩展研究进展

[J]. 安全与环境学报, 2024, 24: 3063

[本文引用: 2]

Qiu Y, Zhou S Y, Gu W, et al.

Application prospect analysis of hydrogen enriched compressed natural gas technologies under the target of carbon emission peak and carbon neutrality

[J]. Proc. CSEE, 2022, 42: 1301

[本文引用: 1]

邱 玥, 周苏洋, 顾 伟 . “

碳达峰、碳中和”目标下混氢天然气技术应用前景分析

[J]. 中国电机工程学报, 2022, 42: 1301

[本文引用: 1]

Liu B, Bi Z Y, Li Z X, et al.

Research progress in pure hydrogen and hydrogen doped transportation pipes at home and abroad

[J]. Welded Pipe Tube, 2024, 47(7): 8

[本文引用: 2]

刘 斌, 毕宗岳, 李中祥 .

国内外纯氢及掺氢输送管材研究进展

[J]. 焊管, 2024, 47(7): 8

[本文引用: 2]

Zhang Y W, Gu C H, Li Y H, et al.

Effects of hydrogen in synthetic natural gas on mechanical properties of X80 steel spiral welded pipe

[J]. Pressure Vessel Technol., 2020, 37(3): 1

[本文引用: 2]

张一苇, 顾超华, 李炎华 .

煤制天然气中氢对X80钢螺旋焊管力学性能的影响

[J]. 压力容器, 2020, 37(3): 1

[本文引用: 2]

Wu W, Li Y, Ji L K, et al.

Progress in research on fatigue behavior of pipeline steel

[J]. Welded Pipe Tube, 2009, 32(8): 31

[本文引用: 1]

武 威, 李 洋, 吉玲康 .

管线钢疲劳行为研究进展

[J]. 焊管, 2009, 32(8): 31

[本文引用: 1]

Zhong Y, Shan Y Y, Huo C Y, et al.

Progress in research on fatigue characteristics of pipeline steel

[J]. Mater. Rev., 2003, 17(8): 11

[本文引用: 1]

钟 勇, 单以银, 霍春勇 .

管线钢疲劳特性研究进展

[J]. 材料导报, 2003, 17(8): 11

[本文引用: 1]

Gou J X, Nie R Y, Xing X, et al.

Fatigue crack growth model of X80 pipeline steel in hydrogen environment for quantification of hydrogen pressure effect

[J]. Oil Gas Storage Transp., 2023, 42: 754

[本文引用: 2]

苟金鑫, 聂如煜, 邢 潇 .

临氢X80管线钢量化氢压作用的疲劳裂纹扩展模型

[J]. 油气储运, 2023, 42: 754

[本文引用: 2]

Wu Y T, Qiao G Y, Xu K, et al.

Effect of hydrogen on tensile and fatigue properties of ferritic/bainite dual-phase X70 pipeline steel

[J]. Trans. Mater. Heat Treat., 2023, 44(9): 114

[本文引用: 1]

吴英铜, 乔桂英, 徐 凯 .

氢对铁素体/贝氏体双相X70管线钢拉伸及疲劳性能的影响

[J]. 材料热处理学报, 2023, 44(9): 114

[本文引用: 1]

Nanninga N, Slifka A, Levy Y, et al.

A review of fatigue crack growth for pipeline steels exposed to hydrogen

[J]. J. Res. Natl. Inst. Stand. Technol., 2010, 115: 437

PMID      [本文引用: 3]

Hydrogen pipeline systems offer an economical means of storing and transporting energy in the form of hydrogen gas. Pipelines can be used to transport hydrogen that has been generated at solar and wind farms to and from salt cavern storage locations. In addition, pipeline transportation systems will be essential before widespread hydrogen fuel cell vehicle technology becomes a reality. Since hydrogen pipeline use is expected to grow, the mechanical integrity of these pipelines will need to be validated under the presence of pressurized hydrogen. This paper focuses on a review of the fatigue crack growth response of pipeline steels when exposed to gaseous hydrogen environments. Because of defect-tolerant design principles in pipeline structures, it is essential that designers consider hydrogen-assisted fatigue crack growth behavior in these applications.

Richards F.

Failure analysis of a natural gas pipeline rupture

[J]. J. Fail. Anal. Prev., 2013, 13: 653

[本文引用: 1]

Li S Y, Quan J, Liu Y, et al.

Prevention of failure accidents of gas transmission pipelines in high consequence areas

[J]. China Pet. Chem. Stand. Qual., 2022, 42(19): 65

[本文引用: 1]

李枢一, 全 佳, 刘 颜 .

高后果区输气管道失效事故防范

[J]. 中国石油和化工标准与质量, 2022, 42(19): 65

[本文引用: 1]

Wang X W, Luo J H, Yuan H W, et al.

Hazard analysis on the offshore natural gas pipelines fatigue failure leakage

[J]. Fire Sci. Technol., 2018, 37: 729

[本文引用: 1]

王小完, 骆济豪, 袁宏伟 .

海底天然气管道疲劳破坏泄漏灾害研究

[J]. 消防科学与技术, 2018, 37: 729

[本文引用: 1]

Oriani R A.

A mechanistic theory of hydrogen embrittlement of steels

[J]. Ber. Bunsen-Ges. Phys. Chem., 1972, 76: 848

[本文引用: 1]

Beachem C D.

A new model for hydrogen-assisted cracking (hydrogen “embrittlement”)

[J]. Metall. Trans., 1972, 3: 441

[本文引用: 1]

Nagumo M, Takai K.

The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: overview

[J]. Acta Mater., 2019, 165: 722

[本文引用: 1]

Lynch S P.

Environmentally assisted cracking: overview of evidence for an adsorption-induced localised-slip process

[J]. Acta Metall., 1988, 36: 2639

[本文引用: 1]

Röthig M, Hoschke J, Tapia C, et al.

A review of gas phase inhibition of gaseous hydrogen embrittlement in pipeline steels

[J]. Int. J. Hydrog. Energy, 2024, 60: 1239

[本文引用: 1]

Murakami Y, Kanezaki T, Mine Y, et al.

Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels

[J]. Metall. Mater. Trans., 2008, 39A: 1327

[本文引用: 1]

Marrow T J, Cotterill P J, King J E.

Temperature effects on the mechanism of time independent hydrogen assisted fatigue crack propagation in steels

[J]. Acta Metall. Mater., 1992, 40: 2059

[本文引用: 1]

Nishikawa H A, Oda Y, Noguchi H.

Investigation of the mechanism for brittle-striation formation in low carbon steel fatigued in hydrogen gas

[J]. J. Solid Mech. Mater. Eng., 2011, 5: 370

[本文引用: 1]

Birenis D, Ogawa Y, Matsunaga H, et al.

Interpretation of hydrogen-assisted fatigue crack propagation in BCC iron based on dislocation structure evolution around the crack wake

[J]. Acta Mater., 2018, 156: 245

[本文引用: 3]

Dmytrakh I M, Leshchak R L, Syrotyuk A M, et al.

Effect of hydrogen concentration on fatigue crack growth behaviour in pipeline steel

[J]. Int. J. Hydrog. Energy, 2017, 42: 6401

[本文引用: 1]

Entezari E, Velázquez J L G, Mohtadi-Bonab M A, et al.

Experimental observations of nucleation and crack growth paths of hydrogen-induced cracking in pipeline steel

[J]. Eng. Fail. Anal., 2023, 154: 107650

Peng Z X, Cao C S, Huang F, et al.

Effect of slow strain rates on the hydrogen migration and different crack propagation modes in pipeline steel

[J]. Steel Res. Int., 2023, 94: 2300070

[本文引用: 2]

Shang J, Guo J X, Xing B H, et al.

CO2 effect on the fatigue crack growth of X80 pipeline steel in hydrogen-enriched natural gas: experiment vs DFT

[J]. Int. J. Hydrog. Energy, 2024, 66: 636

[本文引用: 2]

Cai L X, Bai G Q, Gao X F, et al.

Experimental investigation on the hydrogen embrittlement characteristics and mechanism of natural gas-hydrogen transportation pipeline steels

[J]. Mater. Res. Express, 2022, 9: 046512

[本文引用: 1]

Zheng T S, Chen N Z.

A cyclic cohesive zone model for predicting hydrogen assisted fatigue crack growth (FCG) of subsea pipeline steels

[J]. Int. J. Fatigue, 2023, 173: 107707

[本文引用: 4]

Wu X, Zhang H F, Yang M, et al.

From the perspective of new technology of blending hydrogen into natural gas pipelines transmission: mechanism, experimental study, and suggestions for further work of hydrogen embrittlement in high-strength pipeline steels

[J]. Int. J. Hydrog. Energy, 2022, 47: 8071

[本文引用: 3]

Golahmar A, Kristensen P K, Niordson C F, et al.

A phase field model for hydrogen-assisted fatigue

[J]. Int. J. Fatigue, 2022, 154: 106521

[本文引用: 3]

Li P D, Li W D, Li B, et al.

A review on phase field models for fracture and fatigue

[J]. Eng. Fract. Mech., 2023, 289: 109419

[本文引用: 1]

Cui C J, Bortot P, Ortolani M, et al.

Computational predictions of hydrogen-assisted fatigue crack growth

[J]. Int. J. Hydrog. Energy, 2024, 72: 315

[本文引用: 3]

Lo Y S, Borden M J, Ravi-Chandar K, et al.

A phase-field model for fatigue crack growth

[J]. J. Mech. Phys. Solids, 2019, 132: 103684

[本文引用: 1]

De Francisco U, Larrosa N O, Peel M J.

Development of a microstructural cohesive zone model for intergranular hydrogen environmentally assisted cracking

[J]. Eng. Fract. Mech., 2022, 260: 108167

[本文引用: 1]

Fernández-Sousa R, Betegón C, Martínez-Pañeda E.

Cohesive zone modelling of hydrogen assisted fatigue crack growth: The role of trapping

[J]. Int. J. Fatigue, 2022, 162: 106935

[本文引用: 1]

Amaro R L, Rustagi N, Findley K O, et al.

Modeling the fatigue crack growth of X100 pipeline steel in gaseous hydrogen

[J]. Int. J. Fatigue, 2014, 59: 262

[本文引用: 1]

Mohtadi-Bonab M A.

Effect of different parameters on hydrogen affected fatigue failure in pipeline steels

[J]. Eng. Fail. Anal., 2022, 137: 106262.

[本文引用: 5]

Wang H L, Ming H L, Wang J Q, et al.

Hydrogen permeation behavior at different positions in the normal direction of X42 and X52 pipeline steels

[J]. Int. J. Hydrog. Energy, 2024, 72: 1105

[本文引用: 1]

Mohtadi-Bonab M A, Eskandari M, Rahman K M M, et al.

An extensive study of hydrogen-induced cracking susceptibility in an API X60 sour service pipeline steel

[J]. Int. J. Hydrog. Energy, 2016, 41: 4185

[本文引用: 1]

Drexler E S, Slifka A J, Amaro R L, et al.

Fatigue crack growth rates of API X70 pipeline steel in a pressurized hydrogen gas environment

[J]. Fatigue Fract. Eng. Mater. Struct., 2014, 37: 517

[本文引用: 3]

Zhao X H, Wang H, Liu G, et al.

Research on the hydrogen assisted fatigue damage in X80 pipeline steel welded joint

[J]. Mater. Today Commun., 2022, 31: 103524

Ronevich J A, D'Elia C R, Hill M R.

Fatigue crack growth rates of X100 steel welds in high pressure hydrogen gas considering residual stress effects

[J]. Eng. Fract. Mech., 2018, 194: 42

[本文引用: 1]

Yao C, Chen J, Ming H L, et al.

Research progress on hydrogen permeability behavior of pipeline steel

[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209

[本文引用: 1]

姚 婵, 陈 健, 明洪亮 .

管线钢氢渗透行为的研究进展

[J]. 中国腐蚀与防护学报, 2023, 43: 209

[本文引用: 1]

Yuan W, Huang F, Gan L J, et al.

Effect of microstructure on hydrogen induced cracking and hydrogen trapping behavior of X100 pipeline steel

[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 536

[本文引用: 1]

袁 玮, 黄 峰, 甘丽君 .

显微组织对X100管线钢氢致开裂及氢捕获行为影响

[J]. 中国腐蚀与防护学报, 2019, 39: 536

[本文引用: 1]

Park G T, Koh S U, Jung H G, et al.

Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel

[J]. Corros. Sci., 2008, 50: 1865

[本文引用: 2]

Wang M M, Gao X H, Song L Y, et al.

Hydrogen trapping and electrochemical corrosion behavior of V-N microalloyed X80 pipeline steels consisting of acicular ferrite and polygonal ferrite

[J]. J. Iron Steel Res. Int., 2022, 29: 1683

[本文引用: 1]

Cheng W S, Song B, Mao J H.

Effect of Ce content on the hydrogen induced cracking of X80 pipeline steel

[J]. Int. J. Hydrog. Energy, 2023, 48: 15303

[本文引用: 1]

Li L F, Song B, Cheng J, et al.

Effects of cooling processes on microstructure and susceptibility of hydrogen-induced cracking of X80 pipeline steel

[J]. Mater. Corros., 2018, 69: 590

[本文引用: 1]

Mousavi Anijdan S H, Arab G, Sabzi M, et al.

Sensitivity to hydrogen induced cracking, and corrosion performance of an API X65 pipeline steel in H2S containing environment: influence of heat treatment and its subsequent microstructural changes

[J]. J. Mater. Res. Technol., 2021, 15: 1

DOI      [本文引用: 2]

In this investigation, the effect of microstructural changes and phase equilibria on corrosion behavior and hydrogen induced cracking (HIC) sensitivity of an API X65 pipeline steel was studied. For this purpose, heat treatment was performed at 850 degrees C, 950 degrees C, 1050 degrees C and 1150 degrees C to engineer the desired microstructure of this pipeline steel. Then, the microstructural evolution was performed by optical microscopy, and Field Emission Scanning Electron Mi-croscopy (FE-SEM) equipped with Energy Dispersive X-Ray Spectroscopy (EDS). Corrosion properties were evaluated in H2S environment by open circuit potential (OCP), Potentiody-namic polarization and Electrochemical Impedance Spectroscopy (EIS). As well, HIC sensi-tivity of the API X65 pipeline steel was assessed by hydrogen charging of the cathode and immediately conducting the tensile test. Microscopy analyses showed that the microstruc-ture of the steel is ferritic-pearlitic together with the islands of martensite/austenite con-stituents. Increasing the heat treatment temperature reduced the amount of pearlite and increased ferrite grain size. It also stabilized the ferrite content. Corrosion results indicated that no active layer was formed on the surface of this pipeline steel. Also, increasing the heat treatment temperature increased the corrosion resistance and reduced sensitivity to micro-galvanic localized corrosion. As well, results suggested that the sensitivity to HIC in the API X65 pipeline was substantially increased with increasing the amount of pearlite and reducing the amount of ferrite; i.e. at lower heat treatment temperature. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Mousavi Anijdan S H, Sabzi M, Park N, et al.

Sour corrosion performance and sensitivity to hydrogen induced cracking in the X70 pipeline steel: effect of microstructural variation and pearlite percentage

[J]. Int. J. Pressure Vessels Piping, 2022, 199: 104759

[本文引用: 1]

Koren E, Yamabe J, Lu X, et al.

Hydrogen diffusivity in X65 pipeline steel: desorption and permeation studies

[J]. Int. J. Hydrog. Energy, 2024, 61: 1157

[本文引用: 2]

Kim J S, Lee Y H, Lee D L, et al.

Microstructural influences on hydrogen delayed fracture of high strength steels

[J]. Mater. Sci. Eng., 2009, 505A: 105

[本文引用: 1]

Tau L, Chan S L I.

Effects of ferrite/pearlite alignment on the hydrogen permeation in a AISI 4130 steel

[J]. Mater. Lett., 1996, 29: 143

[本文引用: 1]

Ogawa Y, Hino M, Nakamura M, et al.

Pearlite-driven surface-cracking and associated loss of tensile ductility in plain-carbon steels under exposure to high-pressure gaseous hydrogen

[J]. Int. J. Hydrog. Energy, 2021, 46: 6945

[本文引用: 1]

Ronevich J A, Somerday B P, San Marchi C W.

Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

[J]. Int. J. Fatigue, 2016, 82: 497

[本文引用: 1]

Ogawa Y, Nishida H, Nakamura M, et al.

Dual roles of pearlite microstructure to interfere/facilitate gaseous hydrogen-assisted fatigue crack growth in plain carbon steels

[J]. Int. J. Fatigue, 2022, 154: 106561

[本文引用: 3]

Ogawa Y, Iwata K.

Resistance of pearlite against hydrogen-assisted fatigue crack growth

[J]. Int. J. Hydrogen Energy, 2022, 47: 31703

[本文引用: 1]

Wu C, Yan C Y, Zhang S L, et al.

Research on hydrogen-induced induced cracking sensitivity of X80 pipeline steel under different heat treatments

[J]. Materials, 2024, 17: 1953

[本文引用: 1]

Arafin M A, Szpunar J A.

Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking

[J]. Mater. Sci. Eng., 2011, 528A: 4927

[本文引用: 2]

Huang F, Li X G, Liu J, et al.

Effects of alloying elements, microstructure, and inclusions on hydrogen induced cracking of X120 pipeline steel in wet H2S sour environment

[J]. Mater. Corros., 2012, 63: 59

[本文引用: 1]

Entezari E, Velázquez J L G, López D R, et al.

An experimental and statistical study on the characteristics of non-metallic inclusions that serve as hydrogen-induced crack nucleation sites in pipeline steel

[J]. Eng. Fail. Anal., 2023, 154: 107695

[本文引用: 2]

Jack T A, Pourazizi R, Ohaeri E, et al.

Investigation of the hydrogen induced cracking behaviour of API 5L X65 pipeline steel

[J]. Int. J. Hydrog. Energy, 2020, 45: 17671

Zhu Y S, Zhang J M, Wu F J, et al.

Analysis and prediction of nonmetallic inclusions and their effect on hydrogen induced cracking behavior of X65 acid-resistant pipeline steel

[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 169

[本文引用: 1]

朱延山, 张继明, 武凤娟 .

X65抗酸管线钢中非金属夹杂物和氢致开裂裂纹的分析及预测

[J]. 中国腐蚀与防护学报, 2022, 42: 169

DOI      [本文引用: 1]

采用金相和扫描电镜分析方法,对X65抗酸管线钢中的大尺寸非金属夹杂物及夹杂物诱发的氢致开裂 (HIC) 裂纹进行了研究,并采用极值统计方法对不同体积管线钢中大尺寸非金属夹杂物及其可能诱发的HIC裂纹尺寸进行了预测。结果表明,X65管线钢中大尺寸非金属夹杂物随着预测体积的增加而增大,预测的最大夹杂物尺寸与实际观察结果相吻合;而通过最大夹杂物尺寸预测的HIC裂纹长度与实验检测裂纹长度一致。

Domizzi G, Anteri G, Ovejero-Garcı́a J.

Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels

[J]. Corros. Sci., 2001, 43: 325

[本文引用: 1]

Du X S, Cao W B, Wang C D, et al.

Effect of microstructures and inclusions on hydrogen-induced cracking and blistering of A537 steel

[J]. Mater. Sci. Eng., 2015, 642A: 181

[本文引用: 1]

Wang B, Zhou C, Li L J, et al.

Resistance to hydrogen induced corrosion cracking of weld joint of X100 pipeline steel

[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 237

[本文引用: 1]

王 斌, 周 翠, 李良君 .

X100管线钢焊接接头抗HIC性能研究

[J]. 中国腐蚀与防护学报, 2014, 34: 237

[本文引用: 1]

Qin W, Thomas A, Cheng Z Q, et al.

Key factors affecting hydrogen trapping at the inclusions in steels: a combined study using microprint technique and theoretical modeling

[J]. Corros. Sci., 2022, 200: 110239

[本文引用: 1]

Mostafijur Rahman K M, Mohtadi-Bonab M A, Ouellet R, et al.

Effect of electrochemical hydrogen charging on an API X70 pipeline steel with focus on characterization of inclusions

[J]. Int. J. Pressure Vessels Piping, 2019, 173: 147

[本文引用: 1]

Huang F, Liu J, Deng Z J, et al.

Effect of microstructure and inclusions on hydrogen induced cracking susceptibility and hydrogen trapping efficiency of X120 pipeline steel

[J]. Mater. Sci. Eng., 2010, 527A: 6997

[本文引用: 1]

Liu Z Y, Li X G, Du C W, et al.

Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment

[J]. Corros. Sci., 2009, 51: 895

[本文引用: 1]

Zhang S Q, Huang Y H, Sun B T, et al.

Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels

[J]. Mater. Sci. Eng., 2015, 626A: 136

[本文引用: 1]

Giarola J M, Calderón-Hernández J W, Quispe-Avilés J M, et al.

Hydrogen-induced cracking and corrosion behavior of friction stir welded plates of API 5L X70 pipeline steel

[J]. Int. J. Hydrog. Energy, 2021, 46: 28166

[本文引用: 2]

Gan L J, Huang F, Zhao X Y, et al.

Hydrogen trapping and hydrogen induced cracking of welded X100 pipeline steel in H2S environments

[J]. Int. J. Hydrog. Energy, 2018, 43: 2293

[本文引用: 1]

Mohtadi-Bonab M A, Eskandari M.

A focus on different factors affecting hydrogen induced cracking in oil and natural gas pipeline steel

[J]. Eng. Fail. Anal., 2017, 79: 351

[本文引用: 2]

Gavras A G, Lados D A, Donald J K.

A unified method of design for fatigue crack growth resistance in structural materials

[J]. Int. J. Fatigue, 2013, 47: 58

[本文引用: 2]

Ronevich J A, Somerday B P.

Assessing gaseous hydrogen assisted fatigue crack growth susceptibility of pipeline steel weld fusion zones and heat affected zones

[J]. Mater. Perform. Charact., 2016, 5: 290

[本文引用: 2]

Huang G, Zheng J Y, Meng B, et al.

Mechanical properties of X70 welded joint in high-pressure natural gas/hydrogen mixtures

[J]. J. Mater. Eng. Perform., 2020, 29: 1589

DOI      [本文引用: 1]

The effect of hydrogen on the mechanical properties of X70 welded joint was investigated in simulated natural gas/hydrogen mixtures at 10 MPa. The hydrogen volume fraction was set as 0, 5.0 and 10.0 vol.%. The slow strain rate tensile test showed that the reduction in the area of the welded zone (WZ) metal was reduced more than that of the base metal. The variation in fatigue crack growth rate (FCGR) from high to low followed the order: heat-affected zone (HAZ) metal, base metal and WZ metal. In addition, the difference became more obvious with increasing hydrogen volume fraction. For the HAZ metal, the FCGR in 10.0 vol.% hydrogen mixtures was approximately 22 times of that in nitrogen. Furthermore, based on FCGR and fracture mechanics, the predicted fatigue life of the X70 pipeline with an initial flaw depth of 0.5 mm dropped sharply from 34,302 cycles to 3457 cycles even though 5.0 vol.% hydrogen was added in the simulated natural gas.

Olden V, Alvaro A, Akselsen O M.

Hydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint-experiments and FE simulations

[J]. Int. J. Hydrog. Energy, 2012, 37: 11474

[本文引用: 1]

Nguyen T T, Beak U B, Park J, et al.

Hydrogen environment assisted cracking in X70 welding heat-affected zone under a high-pressure hydrogen gas

[J]. Theor. Appl. Fract. Mech., 2020, 109: 102746

[本文引用: 2]

Amaro R L, White R M, Looney C P, et al.

Development of a Model for Hydrogen-Assisted Fatigue Crack Growth of Pipeline Steel1

[J]. J. Pressure Vessel Technol., 2018, 140: 021403.

[本文引用: 1]

Ronevich J A, Song E J, Feng Z L, et al.

Fatigue crack growth rates in high pressure hydrogen gas for multiple X100 pipeline welds accounting for crack location and residual stress

[J]. Eng. Fract. Mech., 2020, 228: 106846

[本文引用: 1]

Cialone H J, Holbrook J H.

Effects of gaseous hydrogen on fatigue crack growth in pipeline steel

[J]. Metall. Mater. Trans., 1985, 16A: 115

[本文引用: 1]

Liu D, Liu J, Huang F, et al.

Corrosion fatigue crack growth prediction model based on stress ratio and threshold for marine engineering steel DH36Z35 in seawater

[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 163

[本文引用: 1]

刘 冬, 刘 静, 黄 峰 .

考虑应力比和门槛值的海水腐蚀疲劳裂纹扩展预测模型

[J]. 中国腐蚀与防护学报, 2022, 42: 163

[本文引用: 1]

Fassina P, Brunella F, Lazzari L, et al.

Fatigue behavior of pipeline steel under hydrogen environment and low temperature

[J]. Procedia Eng., 2011, 10: 3345

[本文引用: 1]

Fassina P, Brunella M F, Lazzari L, et al.

Effect of hydrogen and low temperature on fatigue crack growth of pipeline steels

[J]. Eng. Fract. Mech., 2013, 103: 10

[本文引用: 1]

Shinko T, Hénaff G, Halm D, et al.

Hydrogen-affected fatigue crack propagation at various loading frequencies and gaseous hydrogen pressures in commercially pure iron

[J]. Int. J. Fatigue, 2019, 121: 197

[本文引用: 2]

Alvaro A, Wan D, Olden V, et al.

Hydrogen enhanced fatigue crack growth rates in a ferritic Fe-3 wt%Si alloy and a X70 pipeline steel

[J]. Eng. Fract. Mech., 2019, 219: 106641

[本文引用: 1]

Macadre A, Artamonov M, Matsuoka S, et al.

Effects of hydrogen pressure and test frequency on fatigue crack growth properties of Ni-Cr-Mo steel candidate for a storage cylinder of a 70 MPa hydrogen filling station

[J]. Eng. Fract. Mech., 2011, 78: 3196 Struct. Integr., 2016, 2: 525

[本文引用: 1]

Yamabe J, Yoshikawa M, Matsunaga H, et al.

Effects of hydrogen pressure, test frequency and test temperature on fatigue crack growth properties of low-carbon steel in gaseous hydrogen

[J]. Struct. Integr., 2016, 2: 525

[本文引用: 1]

An T, Peng H T, Bai P P, et al.

Influence of hydrogen pressure on fatigue properties of X80 pipeline steel

[J]. Int. J. Hydrog. Energy, 2017, 42: 15669

[本文引用: 6]

Slifka A J, Drexler E S, Nanninga N E, et al.

Fatigue crack growth of two pipeline steels in a pressurized hydrogen environment

[J]. Corros. Sci., 2014, 78: 313

[本文引用: 1]

León-Cázares F D, Agnani M, Ronevich J, et al.

Effects of hydrogen partial pressure on crack initiation and growth rate in vintage X52 steel

[J]. Int. J. Hydrog. Energy, 2024, doi: 10.1016/j.ijhydene.2024.02.292

[本文引用: 1]

Dadfarnia M, Sofronis P, Brouwer J, et al.

Assessment of resistance to fatigue crack growth of natural gas line pipe steels carrying gas mixed with hydrogen

[J]. Int. J. Hydrog. Energy, 2019, 44: 10808

[本文引用: 1]

Staykov A, Yamabe J, Somerday B P.

Effect of hydrogen gas impurities on the hydrogen dissociation on iron surface

[J]. Int. J. Quantum Chem., 2014, 114: 626

[本文引用: 1]

Sun Y H, Ren Y N, Cheng Y F.

Dissociative adsorption of hydrogen and methane molecules at high-angle grain boundaries of pipeline steel studied by density functional theory modeling

[J]. Int. J. Hydrog. Energy, 2022, 47: 41069

[本文引用: 1]

Staykov A, Komoda R, Kubota M, et al.

Coadsorption of CO and H2 on an iron surface and its implication on the hydrogen embrittlement of iron

[J]. J. Phys. Chem., 2019, 123C: 30265

[本文引用: 2]

Wang T, Tian X X, Yang Y, et al.

Co-adsorption and mutual interaction of nCO + mH2 on the Fe(110) and Fe(111) surfaces

[J]. Catal. Today, 2016, 261: 82

[本文引用: 1]

Zhou C S, Zhou H B, Zhang L.

The impact of impurity gases on the hydrogen embrittlement behavior of pipeline steel in high-pressure H2 environments

[J]. Materials, 2024, 17: 2157

[本文引用: 1]

Zhang R, Yuan C, Liu C W, et al.

Effects of natural gas impurities on hydrogen embrittlement susceptibility and hydrogen permeation of X52 pipeline steel

[J]. Eng. Fail. Anal., 2024, 159: 108111

[本文引用: 2]

/