Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 803-811     CSTR: 32134.14.1005.4537.2024.201      DOI: 10.11902/1005.4537.2024.201
  研究报告 本期目录 | 过刊浏览 |
7075-T6铝合金在3.5%NaCl溶液中的摩擦腐蚀性能研究
杜晋1(), 胡林岚1, 孙健1, 宋庆华1, 陈蒙1, 肖金坤2
1.扬州市职业大学机械工程学院 扬州 225009
2.扬州大学机械工程学院 扬州 225127
Tribo-corrosion Performance of 7075-T6 Al-alloy in 3.5%NaCl Solution
DU Jin1(), HU Linlan1, SUN Jian1, SONG Qinghua1, CHEN Meng1, XIAO Jinkun2
1.School of Mechanical Engineering, Yangzhou Polytechnic College, Yangzhou 225009, China
2.School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
引用本文:

杜晋, 胡林岚, 孙健, 宋庆华, 陈蒙, 肖金坤. 7075-T6铝合金在3.5%NaCl溶液中的摩擦腐蚀性能研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 803-811.
Jin DU, Linlan HU, Jian SUN, Qinghua SONG, Meng CHEN, Jinkun XIAO. Tribo-corrosion Performance of 7075-T6 Al-alloy in 3.5%NaCl Solution[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 803-811.

全文: PDF(16152 KB)   HTML
摘要: 

研究7075-T6铝合金在3.5% (质量分数) NaCl溶液中的摩擦腐蚀性能,对铝合金表层钝化膜和摩擦腐蚀表面进行了观察和分析。结果表明:滑动摩擦导致铝合金材料开路电位和动电位极化腐蚀电位降低以及腐蚀电流密度显著增加。在恒阴极电位条件下,摩擦行为去除了钝化膜,加速了析氢反应。在恒阳极电位条件下,摩擦导致腐蚀电流密度显著增大,加速了材料的腐蚀。XPS分析显示,钝化膜的主要成分为Al2O3。在干摩擦、开路电位、恒阳极电位和恒阴极电位条件下的摩擦系数和磨损率排序规律一致,为干摩擦>恒阳极电位>开路电位>恒阴极电位。干摩擦磨损机制为粘着磨损,开路电位和恒阴极电位下的磨损机制为磨粒磨损,恒阳极电位下的磨损机制为腐蚀磨损。

关键词 7075-T6铝合金腐蚀摩擦腐蚀磨损机制    
Abstract

The tribo-corrosion performance of 7075-T6 Al-alloy in 3.5% (mass fraction) NaCl solution was studied, while the variation of the passivation film and the tribo-corroded surface was also examined versus the tribo-corrosion process. The results demonstrate that sliding friction leads to a decrease in the open-circuit potential (OCP) and the potentiodynamic polarization corrosion potential of Al-alloy, whereas, a significant increase in the corrosion current density. In constant cathodic potential condition, the passivation film was removed due to the friction, accelerating the hydrogen evolution reaction. In constant anodic potential condition, friction leads to a significant increase in corrosion current density, accelerating the corrosion of the alloy. XPS analysis result indicates that the primary constituent of the passivation film is Al2O3. In conditions of dry sliding friction, OCP, constant anodic potential, and constant cathodic potential, respectively, the values of friction coefficient and wear rate can be ranked as the following decline order: dry sliding friction>constant anodic potential> OCP>constant cathodic potential. The wear mechanism in dry sliding friction condition is adhesive wear, the wear mechanisms in OCP and constant cathodic potential conditions are abrasive wear, and the wear mechanism in constant anodic potential condition is corrosive wear.

Key words7075-T6 Al-alloy    corrosion    tribo-corrosion    wear mechanism
收稿日期: 2024-07-05      32134.14.1005.4537.2024.201
ZTFLH:  TG172  
基金资助:国家自然科学基金(52374372);扬州市科技计划项目(YZ2023207)
通讯作者: 杜晋,E-mail:dj.yangzhou@163.com,研究方向为金属表面改性与腐蚀防护
Corresponding author: DU Jin, E-mail: dj.yangzhou@163.com
作者简介: 杜 晋,男,1978年生,博士,副教授
图1  摩擦腐蚀实验装置图
图2  7075-T6铝合金XRD谱
图3  7075-T6铝合金组织光镜图
图4  7075-T6铝合金在3.5%NaCl溶液中摩擦腐蚀条件下的OCP值和摩擦系数
图5  7075-T6铝合金在纯腐蚀和摩擦腐蚀条件下的动电位极化曲线
Experimental conditionEcorr / VIcorr / μA·cm-2
Pure corrosion-1.01 ± 0.020.67 ± 0.02
Tribocorrosion-1.14 ± 0.0312.23 ± 2.16
表1  7075-T6铝合金在纯腐蚀和在3.5%NaCl溶液中摩擦腐蚀条件下Tafel分析结果
图6  7075-T6铝合金在3.5%NaCl溶液中-1.5 VAg/AgCl和-0.7 VAg/AgCl恒电位条件下的电流密度和摩擦系数
图7  7075-T6铝合金在干摩擦和在3.5%NaCl溶液中摩擦腐蚀测试的摩擦系数
图8  7075-T6铝合金在干摩擦条件和在3.5%NaCl溶液中摩擦腐蚀测试的耐磨性
图9  7075-T6铝合金在干摩擦条件和在3.5%NaCl溶液中摩擦腐蚀测试的磨损率
图10  Si3N4对摩球在干摩擦条件和在3.5%NaCl溶液中摩擦腐蚀测试后的磨痕图
图11  7075-T6铝合金在干摩擦条件和在3.5%NaCl溶液中摩擦腐蚀测试后磨损表面的SEM图
图12  7075-T6铝合金在-1.5 VAg/AgCl和-0.7 VAg/AgCl条件下磨损表面的EDS图谱
图13  7075-T6铝合金磨痕的XPS图谱分析
[1] Weng S, Yu J, Zhao L H, et al. Effect of corrosion damage on fatigue behavior of AA7075-T651 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 486
[1] 翁 硕, 俞 俊, 赵礼辉 等. 腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 486
[2] Beura V K, Sharma A, Karanth Y, et al. Corrosion behavior of 7050 and 7075 aluminum alloys processed by reactive additive manufacturing [J]. Electrochim. Acta, 2023, 470: 143357
[3] Liu H, Guo X K, Wang W, et al. Effect of ultrasonic shot peening on microstructure and properties of a 7075 Al-alloy rod [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1293
[3] 刘 浩, 郭晓开, 王 维 等. 超声喷丸对7075铝合金棒材组织结构与性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1293
[4] Du J, Zhang J F, Xu J Y, et al. Cavitation-corrosion behaviors of HVOF sprayed WC-25WB-10Co-5NiCr and MoB-25NiCr coatings [J]. Ceram. Int., 2020, 46: 21707
[5] Liu H, Huang X, Huang S Y, et al. Anisotropy of wear and tribocorrosion properties of L-PBF Ti6Al4V [J]. J. Mater. Res. Technol., 2023, 25: 2690
[6] Xiao J K, Xu G M, Chen J, et al. Tribocorrosion behavior of TiZrHfNb-based refractory high-entropy alloys [J]. Wear, 2024, 536-537: 205158
[7] Huang B H, Ye Y X, Wang K, et al. Corrosion damage repair of 7075-T6 aluminum alloy by ultrasonic nanocrystal surface modification [J]. Surf. Coat. Technol., 2023, 474: 130085
[8] Jiang J, Stack M M, Neville A. Modelling the tribo-corrosion interaction in aqueous sliding conditions [J]. Tribol. Int., 2002, 35: 669
[9] Song X P, Wang Y Q, Zhang P, et al. Effect of solution treatment on friction and wear properties of 7055 aluminum alloy [J]. Lubr. Eng., 2020, 45(7): 68
[9] 宋晓萍, 王优强, 张 平 等. 固溶处理后7055铝合金的摩擦磨损性能 [J]. 润滑与密封, 2020, 45(7): 68
[10] Sukumaran A K, Zhang C, Nisar A, et al. Tribological behavior of Al 6061 and Ti6Al4V alloys against lunar regolith simulants at extreme temperatures [J]. Wear, 2023, 530-531: 205028
[11] Li S X, Liu Z W. Influence of temperature on friction and wear behavior of 6061 aluminum alloy [J]. Mater. Mech. Eng., 2016, 40(1): 20
[11] 李斯旭, 刘志文. 温度对6061铝合金摩擦磨损行为的影响 [J]. 机械工程材料, 2016, 40(1): 20
[12] Sun L, Li Y D, Ma Y, et al. Fretting wear behavior of microarc oxidation film on A356 aluminum alloy [J]. Rare Metal Mater. Eng., 2024, 53: 796
[12] 孙 璐, 李元东, 马 颖 等. A356铝合金微弧氧化膜微动磨损行为的研究 [J]. 稀有金属材料与工程, 2024, 53: 796
[13] Xu F H, Liu G L, Ding R, et al. Effect of cryogenic, solution and aging combined heat treatment on friction and wear properties of vacuum die-cast Al alloy [J]. Tribology, 2024, 44(11): 1
[13] 许福海, 刘光磊, 丁 冉 等. 深冷、固溶和时效处理对真空压铸铝合金摩擦磨损性能的影响 [J]. 摩擦学学报, 2024, 44(11): 1
[14] Wang F, Zhang K X, Liu D, et al. Effects of rolling and aging on mechanical properties, friction and wear properties of 7050 aluminum alloy [J]. Hot Work. Technol., 2025, 54(2): 91
[14] 王 帆, 张坷星, 刘 东 等. 轧制及时效对7050铝合金力学性能和摩擦磨损性能的影响 [J]. 热加工工艺, 2025, 54(2): 91
[15] Zhao Q Y, Guo C, Niu K K, et al. Long-term corrosion behavior of the 7A85 aluminum alloy in an industrial-marine atmospheric environment [J]. J. Mater. Res. Technol., 2021, 12: 1350
[16] Meng S P, Yu Y Q, Zhang X B, et al. Investigations on electrochemical corrosion behavior of 7075 aluminum alloy with femtosecond laser modification [J]. Vacuum, 2024, 221: 112911
[17] Li B, He J H, Zhang C, et al. Study on the corrosion behavior of 6061 aluminum alloy in 3.5%NaCl solution immersion test [J]. Sichuan Chem. Ind., 2023, 26(2): 1
[17] 李 波, 何锦航, 张 聪 等. 铝合金(6061)在3.5%NaCl溶液浸泡实验中的腐蚀行为研究 [J]. 四川化工, 2023, 26(2): 1
[18] Duan T G, Li Z, Peng W S, et al. Corrosion characteristics of 5A06 Al-alloy exposed in natural deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 352
[18] 段体岗, 李 祯, 彭文山 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43: 352
[19] Dong C F, An Y H, Li X G, et al. Electrochemical performance of initial corrosion of 7A04 aluminium alloy in marine atmosphere [J]. Chin. J. Nonferr. Metal., 2009, 19: 346
[19] 董超芳, 安英辉, 李晓刚 等. 7A04铝合金在海洋大气环境中初期腐蚀的电化学特性 [J]. 中国有色金属学报, 2009, 19: 346
[20] Wang J Y, Kong X D. Electrochemical corrosion behavior of two Al-based alloys in 3%NaCl solution [J]. Corros. Sci. Prot. Technol., 2011, 23: 41
[20] 汪俊英, 孔小东. 两种铝合金在3%NaCl溶液中的腐蚀特性 [J]. 腐蚀科学与防护技术, 2011, 23: 41
[21] Alberta L A, Vishnu J, Douest Y, et al. Tribocorrosion behavior of β-type Ti-Nb-Ga alloys in a physiological solution [J]. Tribol. Int., 2023, 181: 108325
[22] Cao S F, Mischler S. Modeling tribocorrosion of passive metals-a review [J]. Curr. Opin. Solid State Mater. Sci., 2018, 22: 127
[23] Zhang H W, Cui H Z, Man C, et al. The tribocorrosion resistance of TiN + TiB/TC4 composite coatings and the synergistic strengthening effects of multi-level reinforcements [J]. Corros. Sci., 2023, 219: 111224
[24] Zhu S Y, Bi Q L, Yang J, et al. Tribological behavior of Ni3Al alloy at dry friction and under sea water environment [J]. Tribol. Int., 2014, 75: 24
[25] Li M J, Chen Q J, Cui X, et al. Evaluation of corrosion resistance of the single-phase light refractory high entropy alloy TiCrVNb0.5Al0.5 in chloride environment [J]. J. Alloy. Compd., 2021, 857: 158278
[26] Ren P W, Meng H M, Xia Q J, et al. Tribocorrosion of 316L stainless steel by in-situ electrochemical methods under deep-sea high hydrostatic pressure environment [J]. Corros. Sci., 2022, 202: 110315
[27] Riquelme A, Rodrigo P, Escalera-Rodríguez M D, et al. Corrosion resistance of Al/SiC laser cladding coatings on AA6082 [J]. Coatings, 2020, 10: 673
[1] 彭文山, 辛永磊, 温杰平, 侯健, 孙明先. 极地冰覆盖下变温和恒温对高强钢腐蚀影响研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 821-826.
[2] 宋晓稳, 白苗苗, 陈娜娜, 高逸晖, 冯亚丽, 刘倩倩, 张尧尧, 卢琳, 吴俊升, 肖葵. 海南滨海大气环境中棘孢曲霉对铝合金腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(3): 631-642.
[3] 沈晨, 黄锦阳, 张醒兴, 胡新元, 朱明, 鲁金涛. 金属材料的高温碳化腐蚀与防护研究现状[J]. 中国腐蚀与防护学报, 2025, 45(3): 589-601.
[4] 王宇晗, 李俊, 刘恒维, 许楠, 刘杰, 陈旭. 海洋环境中金属材料微生物腐蚀研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 577-588.
[5] 陈思雨, 王靖羽, 高立强. 桥梁缆索用高强锌铝合金镀层钢丝在中性盐雾环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 827-836.
[6] 张超, 陈俊航, 邹士文, 张欢, 李曌亮, 肖葵. Mg-Gd-Y-Zr合金在模拟沿海贮存环境下的腐蚀行为与机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 731-738.
[7] 刘家兵, 黄诗雨, 郭娜, 郭章伟, 刘涛. 船舶EH40钢在低温和常温海水中的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 620-630.
[8] 郑文涛, 陆飞雪, 都凯, 王志惠, 贾海龙. 喷丸工艺对7075铝合金板材表面性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(3): 765-772.
[9] 郑微, 曲冬阳, 孙中辉, 牛利. 锌离子电池的锌金属负极和电解液的研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 548-562.
[10] 彭立园, 谢敬礼, 曹胜飞, 谭季波, 吴欣强, 张兹瑜. 日本高放废物处置容器腐蚀厚度设计研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 563-576.
[11] 魏然, 蒋全通, 孙琛, 王伟伟, 段继周, 侯保荣. 镁合金在海洋环境中的腐蚀与防护研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 533-547.
[12] 王德岭, 刘以俊, 郭章伟, 刘涛. 船体材料失效分析与防护措施研究进展[J]. 中国腐蚀与防护学报, 2025, 45(3): 611-619.
[13] 陈丽娟, 晁刘伟, 赵景茂. CeO2@Zr-MOF复合材料的制备及其对环氧涂层保护性能的提升作用[J]. 中国腐蚀与防护学报, 2025, 45(3): 664-674.
[14] 戚鹏, 王鹏, 曾艳, 张盾. 微生物腐蚀的检测方法和预测模型[J]. 中国腐蚀与防护学报, 2025, 45(3): 602-610.
[15] 陈潜, 黄伟, 张昌会, 管奥成, 张宸, 叶晓芃. 基于物理引导的集输管道内腐蚀速率预测及可解释性分析[J]. 中国腐蚀与防护学报, 2025, 45(3): 720-730.