Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 720-730     CSTR: 32134.14.1005.4537.2024.121      DOI: 10.11902/1005.4537.2024.121
  研究报告 本期目录 | 过刊浏览 |
基于物理引导的集输管道内腐蚀速率预测及可解释性分析
陈潜1, 黄伟1(), 张昌会2, 管奥成1, 张宸3, 叶晓芃4
1.长江大学石油工程学院 武汉 430100
2.中国石油西南油气田分公司川中油气矿 遂宁 629000
3.中国石油西南油气田分公司重庆气矿 重庆 400707
4.中国西南油气田分公司川中北部采气管理处 遂宁 629000
Physics-guided Prediction of Corrosion Rate Inside Gathering and Transportation Pipelines and Explanatory Analysis
CHEN Qian1, HUANG Wei1(), ZHANG Changhui2, GUAN Aocheng1, ZHANG Chen3, YE Xiaopeng4
1.School of Petroleum Engineering, Yangtze University, Wuhan 430100, China
2.Central Sichuan Oil and Gas Mine, PetroChina Southwest Oil and Gas Field Company, Suining 629000, China
3.Chongqing Division, PetroChina Southwest Oil & Gasfield Company, Chongqing 400707, China
4.Central and Northern Sichuan Gas Production Management Office of Southwest Oil and Gas, Field Company, Suining 629000, China
引用本文:

陈潜, 黄伟, 张昌会, 管奥成, 张宸, 叶晓芃. 基于物理引导的集输管道内腐蚀速率预测及可解释性分析[J]. 中国腐蚀与防护学报, 2025, 45(3): 720-730.
Qian CHEN, Wei HUANG, Changhui ZHANG, Aocheng GUAN, Chen ZHANG, Xiaopeng YE. Physics-guided Prediction of Corrosion Rate Inside Gathering and Transportation Pipelines and Explanatory Analysis[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 720-730.

全文: PDF(3780 KB)   HTML
摘要: 

由于恶劣的服役环境,集输管道的腐蚀问题愈发严重,亟需提出一种准确的模型来预测集输管道的内腐蚀速率。本文首先提出了一种基于物理引导神经网络(PGNN)与改进粒子群算法(IPSO)相结合的管道腐蚀预测方法。通过分析电化学腐蚀机理,总结不同腐蚀因素变化对腐蚀速率的普适性影响规律。然后基于这些普适性规律提出损失函数表征方法,构建物理引导的内腐蚀速率预测模型。使用改进粒子群算法优化模型的超参数。最后结合电化学腐蚀机理和部分依赖图、SHAP算法对预测模型进行可解释性分析。结果表明,PGNN-IPSO方法可以避免模型学习到与物理相悖的错误规律,提升模型预测准确度。该研究对集输管道的腐蚀防护、可靠性评估和维修决策具有重要意义。

关键词 集输管道内腐蚀物理引导神经网络可解释性改进粒子群算法SHAP算法部分依赖图    
Abstract

Due to the harsh operating environment, the corrosion problem of gathering and transportation pipelines has become increasingly severe, necessitating the development of an accurate model to predict the internal corrosion rate of such pipelines. Herein, a pipeline corrosion prediction method that combines physics-guided neural networks (PGNN) with an improved particle swarm optimization (IPSO) algorithm is proposed. By analyzing the electrochemical corrosion mechanism, the universal impact of variations in different corrosion factors on the corrosion rate is summarized. Subsequently, based on these universal laws, a loss function characterization method is proposed to construct a physics-guided internal corrosion rate prediction model. The model's hyperparameters are optimized using a particle swarm algorithm improved through reverse learning, nonlinear weight adjustment mechanisms, and cosine algorithm enhancements. Finally, the predictive model is subjected to interpretability analysis using electrochemical corrosion mechanisms, partial dependence plots, and the SHAP algorithm. The accuracy of the model is evaluated using four metrics: mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and R-squared (R2), while its reliability is assessed based on its consistency with corrosion mechanisms. Results demonstrate that the PGNN-IPSO method can avoid learning erroneous patterns contradicting physical principles, thereby enhancing prediction accuracy. This research holds significant implications for corrosion protection, reliability assessment, and maintenance decision-making regarding gathering and transportation pipelines.

Key wordsgathering pipeline    internal corrosion    physics-guided neural network    interpretability analysis    improved particle swarm optimization    shapley additive explanations    partial dependence plot
收稿日期: 2024-04-12      32134.14.1005.4537.2024.121
ZTFLH:  X397  
基金资助:中国石油西南油气田公司博士后基金(20220305-18)
通讯作者: 黄 伟,E-mail:cjhuangwei@foxmail.com,研究方向为腐蚀信息化
Corresponding author: HUANG Wei, E-mail: cjhuangwei@foxmail.com
作者简介: 陈 潜,男,1993年生,博士,讲师
图1  总体框架图
FeatureMeanMinMaxStdMedianCVKurtosisSkewnessP5P95
X1 (%)1.5200.4253.3550.5091.59533.4601.4960.4230.6672.163
X2 (%)2.4760.5146.7740.9432.57938.0674.7311.1611.0003.472
X3 (℃)39.07520.82059.4238.69338.63622.2460.0440.30224.32956.052
X45.1804.1847.9970.6544.94112.6174.7972.0394.6146.596
X5 (m/s)1.9370.5922.9670.4831.96424.9230.193-0.5120.9292.650
X6 (kg)582.05633.4131474.000364.668497.38362.652-0.0920.965126.9681304.858
Vcorr (mm/a)0.0090.0010.0400.0060.00963.80010.6602.6060.0010.017
表1  采集数据的统计指标
图2  物理引导神经网络示意图
图3  改进粒子群算法流程图
图4  测试集上不同模型的预测结果
ModelMAE / mmRMSE / mmMAPE / %R2
ANN-PSO0.0007120.001067.710.957
ANN-IPSO0.0007060.001067.650.958
PGNN-PSO0.0006140.0008977.240.965
PGNN-IPSO0.0005980.0008657.210.967
表2  各模型误差
图5  特征的部分依赖图
图6  特征的平均绝对SHAP值
图7  SHAP值摘要图
[1] Wang Q Y, Song Y H, Zhang X S, et al. Evolution of corrosion prediction models for oil and gas pipelines: from empirical-driven to data-driven [J]. Eng. Fail. Anal., 2023, 146: 107097
[2] Wang B Q, Mu Y Q, Shen F M, et al. Identification of corrosion factors in blast furnace gas pipe network with corrosion big data online monitoring technology [J]. Corros. Sci., 2024, 230: 111906
[3] Farhadian A, Zhao Y, Naeiji P, et al. Simultaneous inhibition of natural gas hydrate formation and CO2/H2S corrosion for flow assurance inside the oil and gas pipelines [J]. Energy, 2023, 269: 126797
[4] Ma H N, Zhang W D, Wang Y, et al. Advances in corrosion growth modeling for oil and gas pipelines: a review [J]. Process Saf. Environ. Prot., 2023, 171: 71
[5] Dao U, Sajid Z, Khan F, et al. Modeling and analysis of internal corrosion induced failure of oil and gas pipelines [J]. Reliab. Eng. Syst. Saf., 2023, 234: 109170
[6] Qin G J, Cheng Y F, Zhang P. Finite element modeling of corrosion defect growth and failure pressure prediction of pipelines [J]. Int. J. Pressure Vessels Piping, 2021, 194: 104509
[7] Kairy S K, Zhou S, Turnbull A, et al. Corrosion of pipeline steel in dense phase CO2 containing impurities: a critical review of test methodologies [J]. Corros. Sci., 2023, 214: 110986
[8] Nadj M, Jegadeesan H, Maedche A, et al. A situation awareness driven design for predictive maintenance systems: the case of oil and gas pipeline operations [A]. Proceedings of the Twenty-Fourth European Conference on Information Systems (ECIS) [C]. İstanbul, 2016
[9] Zakikhani K, Nasiri F, Zayed T. A review of failure prediction models for oil and gas pipelines [J]. J. Pipeline Syst. Eng. Pract., 2020, 11: 03119001
[10] Xie M J, Tian Z G. A review on pipeline integrity management utilizing in-line inspection data [J]. Eng. Failure Anal., 2018, 92: 222
[11] Dana M M, Javidi M. Corrosion simulation via coupling computational fluid dynamics and NORSOK CO2 corrosion rate prediction model for an outlet header piping of an air-cooled heat exchanger [J]. Eng. Fail. Anal., 2021, 122: 105285
[12] Thorat U, Jones M, Woollam R, et al. Computational fluid dynamics driven mass transfer model for the prediction of CO2 corrosion in pipelines [J]. J. Pipeline Sci. Eng., 2024, 4(1): 100148
[13] Adams C, Garber J, Walters F, et al. Verification of computer modeled tubing life predictions by field data [A]. Proceedings of the Corrosion-National Association of Corrosion Engineers Annual Conference [C]. Houston, 1993
[14] Nešić S, Lunde L. Carbon dioxide corrosion of carbon steel in two-phase flow [J]. Corrosion, 1994, 50: 717
[15] Li D R, Fang Z, Ma T, et al. A mechanistic model for flow accelerated corrosion prediction of a 90° carbon steel elbow in CO2 environments [J]. J. Pipeline Sci. Eng., 2025.
[16] Wu L S, Liao K S, He G X, et al. Wet gas pipeline internal general corrosion prediction based on improved De Waard 95 model [J]. J. Pipeline Syst. Eng. Pract., 2023, 14: 04023041
[17] Nesic S, Postlethwaite J, Olsen S. An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions [J]. Corrosion, 1996, 52: 280
[18] Nesic S, Nyborg R, Stangeland A, et al. Mechanistic modeling for CO2 corrosion with protective iron carbonate films [A]. Paper Presented at the CORROSION 2001 [C]. Houston, 2001
[19] Nesic S. Effects of multiphase flow on internal CO2 corrosion of mild steel pipelines [J]. Energy Fuels, 2012, 26: 4098
[20] Nešić S, Kahyarian A, Choi Y S. Implementation of a comprehensive mechanistic prediction model of mild steel corrosion in multiphase oil and gas pipelines [J]. Corrosion, 2019, 75: 274
[21] Zhang X R, Hou L, Liu J Q, et al. Energy consumption prediction for crude oil pipelines based on integrating mechanism analysis and data mining [J]. Energy, 2022, 254: 124382
[22] Xu L, Hou L, Zhu Z Y, et al. Mid-term prediction of electrical energy consumption for crude oil pipelines using a hybrid algorithm of support vector machine and genetic algorithm [J]. Energy, 2021, 222: 119955
[23] Xu L, Wang Y F, Mo L, et al. The research progress and prospect of data mining methods on corrosion prediction of oil and gas pipelines [J]. Eng. Fail. Anal., 2023, 144: 106951
[24] Xu L, Yu J, Zhu Z Y, et al. Research and application for corrosion rate prediction of natural gas pipelines based on a novel hybrid machine learning approach [J]. Coatings, 2023, 13: 856
[25] Li X H, Jia R C, Zhang R R, et al. A KPCA-BRANN based data-driven approach to model corrosion degradation of subsea oil pipelines [J]. Reliab. Eng. Syst. Saf., 2022, 219: 108231
[26] Li X H, Zhang L Y, Khan F, et al. A data-driven corrosion prediction model to support digitization of subsea operations [J]. Process Saf. Environ. Prot., 2021, 153: 413
[27] Fang J, Cheng X, Gai H L, et al. Development of machine learning algorithms for predicting internal corrosion of crude oil and natural gas pipelines [J]. Comput. Chem. Eng., 2023, 177: 108358
[28] Zhang Y F, Ren W, Wang W L, et al. Interpretable hardness prediction of high-entropy alloys through ensemble learning [J]. J. Alloy. Compd., 2023, 945: 169329
[29] Song Y H, Wang Q Y, Xi Y C, et al. Interpretability study on prediction models for alloy pitting based on ensemble learning [J]. Corros. Sci., 2024, 228: 111790
[30] Li M, Yang Y, He Z S, et al. A wind speed forecasting model based on multi-objective algorithm and interpretability learning [J]. Energy, 2023, 269: 126778
[31] Lazer D, Kennedy R, King G, et al. The parable of Google Flu: traps in big data analysis [J]. Science, 2014, 343: 1203
[32] Karpatne A, Atluri G, Faghmous J H, et al. Theory-guided data science: a new paradigm for scientific discovery from data [J]. IEEE Trans. Knowl. Data Eng., 2017, 29: 2318
[33] Daw A, Karpatne A, Watkins W D, et al. Physics-guided neural networks (PGNN): an application in lake temperature modeling [A]. KarpatneA, KannanR, KumarV, et al. Knowledge Guided Machine Learning [M]. New York: Chapman and Hall/CRC, 2022: 353
[34] Jeong H, Batuwatta-Gamage C, Bai J, et al. An advanced physics-informed neural network-based framework for nonlinear and complex topology optimization [J]. Eng. Struct., 2025, 322: 119194
[35] Zou Z R, Meng X H, Karniadakis G E. Uncertainty quantification for noisy inputs–outputs in physics-informed neural networks and neural operators [J]. Comput. Meth. Appl. Mech. Eng., 2025, 433: 117479
[36] Sun L N, Gao H, Pan S W, et al. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data [J]. Comput. Methods Appl. Mech. Eng., 2020, 361: 112732
[37] Nesic S, Thevenot N, Crolet J L, et al. Electrochemical properties of iron dissolution in the presence of CO2-basics revisited [A]. Paper Presented at the Corrosion 96 [C]. Colorado, 1996
[38] De Waard C, Milliams D E. Carbonic acid corrosion of steel [J]. Corrosion, 1975, 31: 177
[39] Huang X G, Zhou L C, Li Y K, et al. The synergistic effect of temperature, H2S/CO2 partial pressure and stress toward corrosion of X80 pipeline steel [J]. Eng. Failure Anal., 2023, 146: 107079
[40] Asadian M, Sabzi M, Anijdan S H M. The effect of temperature, CO2, H2S gases and the resultant iron carbonate and iron sulfide compounds on the sour corrosion behaviour of ASTM A-106 steel for pipeline transportation [J]. Int. J. Pressure Vessels Piping, 2019, 171: 184
[41] Xiang Y, Wang Z, Li Z, et al. Effect of temperature on corrosion behaviour of X70 steel in high pressure CO2/SO2/O2/H2O environments [J]. Corros. Eng. Sci. Technol., 2013, 48: 121
[42] Liu M, Wang J, Ke W. Corrosion behaviour of X52 pipeline steel in high H2S concentration solutions at temperatures ranging from 25 ℃ to 140 ℃ [J]. Corros. Eng. Sci. Technol., 2013, 48: 380
[43] Abdar P S, Hariri M B, Kahyarian A, et al. A revision of mechanistic modeling of mild steel corrosion in H2S environments [J]. Electrochim. Acta, 2021, 382: 138231
[44] Xiao S, Sun Y B, Wang S H, et al. H2S corrosion mechanism of thermal recovery well and performance of H2S corrosion inhibitor [J]. Corros. Prot., 2023, 44(1): 30
[44] 肖 洒, 孙玉豹, 王少华 等. L80钢的H2S腐蚀机理及H2S缓蚀剂的性能 [J]. 腐蚀与防护, 2023, 44(1): 30
[45] Wang F, Li J, Li J L, et al. Corrosion behavior of metallic pipes in CO2/H2S environment [J]. Hot Working Technol., 2021, 50(4): 1
[45] 王 帆, 李 娟, 李金灵 等. 金属管道在CO2/H2S环境中的腐蚀行为 [J]. 热加工工艺, 2021, 50(4): 1
[46] Ye N, Liao K X, He G X, et al. Summary on influencing factors and evaluation methods of the efficiency of corrosion inhibitor for oil and gas gathering and transportation [J]. Mater. Prot., 2022, 55(9): 167
[46] 叶 男, 廖柯熹, 何国玺 等. 油气集输缓蚀剂缓蚀效率的影响因素及评价方法综述 [J]. 材料保护, 2022, 55(9): 167
[1] 梁梓豪, 应宗权, 刘梅梅, 杨帅. 基于Stacking集成模型融合的钢筋混凝土锈胀开裂预测方法[J]. 中国腐蚀与防护学报, 2024, 44(6): 1601-1609.
[2] 王文泉, 崔宇, 薛蕴鹏, 刘莉, 王福会. 潮湿空气中应力耦合固态NaCl作用下GH4169合金的中温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1399-1411.
[3] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[4] 赵国仙,黄静,薛艳. 某油田地面集输管道用材腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.