Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 821-826     CSTR: 32134.14.1005.4537.2024.145      DOI: 10.11902/1005.4537.2024.145
  研究报告 本期目录 | 过刊浏览 |
极地冰覆盖下变温和恒温对高强钢腐蚀影响研究
彭文山1, 辛永磊1(), 温杰平2, 侯健1, 孙明先1
1.中国船舶集团有限公司第七二五研究所 海洋腐蚀与防护全国重点实验室 青岛 266237
2.海洋化工研究院有限公司 青岛 266001
Effect of Variable- and Constant-Temperature on Corrosion Behavior of High Strength Steel under Polar Ice Cover
PENG Wenshan1, XIN Yonglei1(), WEN Jieping2, HOU Jian1, SUN Mingxian1
1.National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
2.Marine Chemical Research Institute, Qingdao 266001, China
引用本文:

彭文山, 辛永磊, 温杰平, 侯健, 孙明先. 极地冰覆盖下变温和恒温对高强钢腐蚀影响研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 821-826.
Wenshan PENG, Yonglei XIN, Jieping WEN, Jian HOU, Mingxian SUN. Effect of Variable- and Constant-Temperature on Corrosion Behavior of High Strength Steel under Polar Ice Cover[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 821-826.

全文: PDF(7236 KB)   HTML
摘要: 

极地气候环境特殊,金属材料可能长期暴露在冰层覆盖下,为研究冰覆盖腐蚀条件下恒温和变温环境对高强钢腐蚀的影响,采用室内模拟实验。在-45~-5 ℃温度下进行1个月的周期性冰覆盖变温腐蚀测试,与同周期恒温条件下-5和-45 ℃的腐蚀行为进行比较。结果表明:冰层覆盖下,随着温度升高,高强钢的腐蚀速率增加;在冰层覆盖下,温度的变化对高强钢的腐蚀形貌影响较小;电化学测试发现高强钢的容抗弧半径较大,变化范围较小,-5 ℃低温条件下,其自腐蚀电位最低,但是与变温条件下相差不大;XRD和拉曼光谱分析说明腐蚀产物由α-FeOOH、β-FeOOH、γ-FeOOH和Fe3O4/γ-Fe2O3构成,温度从-45 ℃到-45~-5 ℃,再到-5 ℃,腐蚀产物种类呈增加趋势。

关键词 极地环境低温高强钢冰覆盖大气腐蚀腐蚀产物    
Abstract

The polar climate environment is special, and metal materials may be exposed to ice cover for a long time. Herein, the effect of variable- and constant-temperature on the corrosion behavior of a Ni-Cr-Mo-V high-strength steel under ice cover conditions was studied. Therefore, an indoor simulation test procedure was proposed as follows: periodic corrosion tests beneath ice cover were conducted at variable temperatures ranging from -45 to -5 ℃ for one month, meanwhile the corrosion tests beneath ice cover at constant temperatures in the range of -5 and -45 ℃ were tacked as comparison. The results show that under the ice cover, the corrosion rate of high-strength steel increases with the increase of temperature; while the variable temperature has a relatively small impact on the corrosion morphology of high-strength steel; Electrochemical test results reveal that the capacitance arc radius of high-strength steel is relatively large, with a small range of variation. At low temperature -5 ℃, its self-corrosion potential is the lowest, but the difference is not significant compared to those by variable temperature conditions; XRD and Raman spectroscopic analysis indicate that the corrosion products are composed of α-FeOOH, β-FeOOH, γ-FeOOH, and Fe3O4/γ-Fe2O3. The temperature ranges from -45 ℃ to -45--5 ℃, and then to -5 ℃, the spicies of phase for corrosion products are showing an increasing trerd.

Key wordspolar environment    low temperature    high strength steel    ice cover    atmospheric corrosion    corrosion products
收稿日期: 2024-05-09      32134.14.1005.4537.2024.145
ZTFLH:  TG172.5  
通讯作者: 辛永磊,E-mail:xinyl@sunrui.nct,研究方向为海洋腐蚀与防护
Corresponding author: XIN Yonglei, E-mail: xinyl@sunrui.nct
作者简介: 彭文山,男,1987年生,博士,高级工程师
图1  高强钢冰覆盖条件下不同温度的腐蚀速率
图2  高强钢在冰覆盖条件下不同温度1个月腐蚀后的表面形貌
图3  高强钢在不同温度的冰覆盖条件下大气腐蚀后的表面微观形貌
图4  高强钢在不同温度的冰覆盖条件下暴露1个月后的表面3D形貌
图5  高强钢在不同温度的冰层覆盖条件下的Nyquist图
图6  高强钢在低温大气腐蚀环境中EIS结果对应的等效电路图
Temperature / ℃Rs / Ω·cm2Qdl / F·cm2N / 0 < n < 1Rf / Ω·cm2Qf / F·cm2N / 0 < n < 1Rct / Ω·cm2
-452.9360.00010280.93453.4520.0012350.933718.52
-45--51.5320.00058660.789913.680.0031570.813858.45
-52.7390.00047890.91458.4230.0034220.889134.57
表1  冰覆盖下高强钢在不同温度大气环境中暴露1个月的EIS拟合结果
图7  高强钢在冰覆盖条件下不同温度的动电位极化曲线
图8  高强钢在冰覆盖下不同温度大气暴露1个月后的X射线衍射图谱
图9  高强钢在冰覆盖下不同温度大气腐蚀后的Raman图谱
[1] Ye Y F, Shokr M, Chen Z Q, et al. Exploring the effect of arctic perennial sea ice on modulation of local air temperature [J]. Adv. Climate Change Res., 2022, 13(4): 473
[2] Li H L, Ke C Q. Open water variability in the North Pole from 1982 to 2016 [J]. Haiyang Xuebao, 2017, 39(12): 109
[2] 李海丽, 柯长青. 1982—2016年北极开阔水域变化 [J]. 海洋学报, 2017, 39(12): 109
[3] Sun S B, Zhao Z M, Gao Z P, et al. Friction-corrosion performance of steels and their welding zone for composite plate of 317L Stainless Steel/FH40 low-temperature marine steel in simulated sea waters at different temperatures [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 69
[3] 孙士斌, 赵子铭, 高珍鹏 等. 317L/FH40复合板在不同温度下摩擦-腐蚀耦合作用机理研究 [J]. 中国腐蚀与防护学报, 2023, 43: 69
[4] Leng W J, Shi X Z, Xin Y L, et al. Correlation of corrosion information acquired by indoor acceleration testing and by real low temperature marine atmosphere exposure in polar region for Ni-Cr-Mo-V steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 91
[4] 冷文俊, 石西召, 辛永磊 等. 极地低温海洋大气环境下Ni-Cr-Mo-V钢腐蚀行为与室内外相关性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 91
[5] Morcillo M, Chico B, de la Fuente D, et al. Atmospheric corrosion of reference metals in Antarctic sites [J]. Cold Reg. Sci. Technol., 2004, 40: 165
[6] Li C H, Peng C, Li X H, et al. Initial corrosion behavior of EH36 marine steel in simulated polar marine environment [J]. Int. J. Electrochem. Sci., 2022, 17: 22126
[7] Choi Y Y, Kim M H. Corrosion behaviour of welded low-carbon steel in the Arctic marine environment [J]. RSC Adv., 2018, 8: 30155
[8] Elsner C I, Cavalcanti E, Ferraz O, et al. Evaluation of the surface treatment effect on the anticorrosive performance of paint systems on steel [J]. Prog. Org. Coat., 2003, 48: 50
[9] Panchenko Y M, Mikhailovskii Y N, Shuvakhina L A. Dependence of rates of atmospheric corrosion of metals on climatic conditions in the far-eastern USSR [J]. Prot. Met., 1985, 20: 851
[10] Shi X Z, Cui Z Y, Li J, et al. Atmospheric corrosion of AZ31B magnesium alloy in the antarctic low-temperature environment [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 1421
[11] Henriksen J F, Mikhailov A A. Atmospheric corrosion tests along the Norwegian-Russian border Part II [R]. Kjeller: Norwegian Institute for Air Research, 1997
[12] Mikhailov A A, Strekalov P V, Panchenko Y M. Atmospheric corrosion of metals in regions of cold and extremely cold climate-A review [J] Protect. Met., 2008, 44: 644
[13] Henriksen J F, Mikhailov A A. Atmospheric corrosion tests of metals in SO2-polluted cold atmosphere in northern Norway and along its border with Russia [J]. Prot. Met., 2002, 38: 579
[14] Mikhailov A A, Strekalov P V, Panchenko Y M. Atmospheric corrosion of metals in regions of cold and extremely cold climate (a review) [J]. Prot. Met., 2008, 44: 644
[15] Li X, Jia J, Liu C, et al. Characterization of corrosion products formed on Q235 carbon steel and T2 copper in the antarctic atmosphere [J]. J. Mater. Res. Technol., 2024, 29:364
[16] Marco J F, Gracia M, Gancedo J R, et al. Characterization of the corrosion products formed on carbon steel after exposure to the open atmosphere in the antarctic and easter island [J]. Corros. Sci., 2000, 42: 753
[17] Hughes J D, King G A, O’Brien D J. Corrosivity in Antarctica—revelations on the nature of corrosion in the world's coldest, driest, highest, and purest continent [A]. Proceedings of the 13th International Corrosion Congress [C]. Melbourne, 1996
[18] Leng W J, Cui Z Y, Wang X, et al. Preparation and study of accelerated corrosion test spectrum of low alloy high strength steel in polar environment [J]. Dev. Appl. Mater., 2023, 38(3): 31
[18] 冷文俊, 崔中雨, 王 昕 等. 低合金高强钢极地环境加速腐蚀试验谱编制与研究 [J]. 材料开发与应用, 2023, 38(3): 31
[19] Qu S P, Zhao X Y, Xuan X Y. New challenges on corrosion and protection of polar steel [J]. Mater. Sci. Technol., 2023, 31(6): 19
[19] 屈少鹏, 赵行娅, 轩星雨. 极地钢铁材料的腐蚀与防护面临新挑战 [J]. 材料科学与工艺, 2023, 31(6): 19
[20] Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Protect., 2022, 42(3): 403
[20] 崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42(3): 403
[21] Fu T, Song G L, Zheng D J. Corrosion damage in frozen 3.5wt.%NaCl solution [J]. Mater. Corros., 2021, 72: 1396
[22] Lin X Y, Zhou Y L, Zhang J G. Island growth of corroded products on various plated surfaces after long-term indoor air exposure in China [A]. Electrical Contacts-1999. Proceedings of the Forty-Fifth IEEE Holm Conference on Electrical Contacts (Cat. No. 99CB36343) [C]. Pittsburgh, 1999: 153
[1] 张超, 陈俊航, 邹士文, 张欢, 李曌亮, 肖葵. Mg-Gd-Y-Zr合金在模拟沿海贮存环境下的腐蚀行为与机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 731-738.
[2] 刘家兵, 黄诗雨, 郭娜, 郭章伟, 刘涛. 船舶EH40钢在低温和常温海水中的腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 620-630.
[3] 白钲清, 农靖, 韦世宸, 徐健. 预充氢对Ni-Cr合金在高温高压水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 338-346.
[4] 杨震宇, 基超, 郭丽雅, 徐闰, 彭伟, 赵洪山, 韦习成, 董瀚. 6种典型商用纯铁和钢材在3.5%NaCl溶液中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(2): 469-478.
[5] 孙士斌, 史常伟, 王东胜, 常雪婷, 李明春. 新型环氧基极地船舶用破冰涂料低温耐磨耐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1177-1188.
[6] 赵连红, 王英芹, 刘元海, 何卫平, 王浩伟. 四种飞机起落架用钢在模拟海水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1263-1273.
[7] 樊志彬, 高智悦, 宗立君, 吴亚平, 李辛庚, 姜波, 杜宝帅. 1050A铝合金在山东不同典型环境中的大气腐蚀行为特征研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1055-1063.
[8] 杜广, 芦国强, 邓龙辉, 蒋佳宁, 曹学强. 铝含量对镍铝合金在稀硫酸溶液中的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1011-1021.
[9] 吴洋, 安易强, 王力伟, 崔中雨. 镁铝合金在模拟低温条件下大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[10] 张佳伟, 黄峰, 汪涵敏, 郎丰军, 袁玮, 刘静. 耐候钢热轧氧化皮对快速稳定化锈层演变规律及耐蚀性影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 891-900.
[11] 傅江悦, 郭建喜, 杨延格, 冷哲, 王文. 单相流冲刷条件下一种低合金高强钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[12] 孙佳钰, 彭文山, 邢少华. 应力-溶解氧耦合对Ni-Cr-Mo-V高强钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(3): 755-764.
[13] 张运军, 蒋有伟, 张忠义, 吕乃欣, 陈君伟, 连国锋. 3Cr合金钢在尿素辅助稠油蒸汽吞吐环境中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(2): 480-488.
[14] 李婷玉, 魏洁, 陈楠, 万晔, 董俊华. 用于大气环境的电化学传感器的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 365-371.
[15] 冷文俊, 石西召, 辛永磊, 杨延格, 王利, 崔中雨, 侯健. 极地低温海洋大气环境下Ni-Cr-Mo-V钢腐蚀行为与室内外相关性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.