|
|
金属材料的高温碳化腐蚀与防护研究现状 |
沈晨1,2, 黄锦阳2( ), 张醒兴2, 胡新元2, 朱明1, 鲁金涛2 |
1.西安科技大学材料科学与工程学院 西安 710054 2.西安热工研究院有限公司 高效灵活煤电及碳捕集利用全国重点实验室 西安 710054 |
|
Research Progress of Carbonization-corrosion and Protection of Alloy Steels |
SHEN Chen1,2, HUANG Jinyang2( ), ZHANG Xingxing2, HU Xinyuan2, ZHU Ming1, LU Jintao2 |
1.College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China 2.National Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, Xi'an Thermal Power Research Institute Co., Ltd., Xi'an 710054, China |
引用本文:
沈晨, 黄锦阳, 张醒兴, 胡新元, 朱明, 鲁金涛. 金属材料的高温碳化腐蚀与防护研究现状[J]. 中国腐蚀与防护学报, 2025, 45(3): 589-601.
Chen SHEN,
Jinyang HUANG,
Xingxing ZHANG,
Xinyuan HU,
Ming ZHU,
Jintao LU.
Research Progress of Carbonization-corrosion and Protection of Alloy Steels[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 589-601.
[1] |
Shi Q, Zhang T Q, Yu S Y. Resuspension characteristic of dust particles in steam generator of high temperature gas-cooled reactor [J]. China Powder Sci. Technol., 2023, 29(4): 1
|
[1] |
石 倩, 张天琦, 于溯源. 高温气冷堆蒸汽发生器中粉尘颗粒的重悬浮特性 [J]. 中国粉体技术, 2023, 29(4): 1
|
[2] |
Luo X W. Research on graphite dust behavior in 10MW high temperature gas-cooled reactor [D]. Beijing: Tsinghua University, 2004
|
[2] |
雒晓卫. 10MW高温气冷堆中石墨粉尘行为研究 [D]. 北京: 清华大学, 2004
|
[3] |
Guo L X, Liang D, Wang X J, et al. Graphite dust deposition in high temperature gas cooled reactor [J]. China Powder Sci. Technol., 2019, 25(2): 47
|
[3] |
郭丽潇, 梁 栋, 王秀娟 等. 高温气冷堆蒸汽发生器中的石墨粉尘沉积 [J]. 中国粉体技术, 2019, 25(2): 47
|
[4] |
Yang Z, Lu J T, Zhang P, et al. Microstructure and steam oxidation performance of the aluminium diffusion coating on Super304H steel [J]. Surf. Technol., 2020, 49(1): 64
|
[4] |
杨 珍, 鲁金涛, 张 鹏 等. Super304H钢表面铝扩散涂层的组织结构和抗蒸汽氧化性能 [J]. 表面技术, 2020, 49(1): 64
|
[5] |
Xiao B, Zhu Z L, Li R T, et al. Research status of high temperature corrosion of candidate materials for power generation system using supercritical carbon dioxide as working fluid [J]. Therm. Power Gener., 2020, 49(10): 30
|
[5] |
肖 博, 朱忠亮, 李瑞涛 等. 超临界二氧化碳工质发电系统候选材料高温腐蚀研究现状与进展 [J]. 热力发电, 2020, 49(10): 30
|
[6] |
Jia Y Q, Liu R T, Li S F, et al. Study on carbon dioxide corrosion of oil and gas pipelines [J]. Yunnan Chem. Technol., 2019, 46(2): 177
|
[6] |
贾逸群, 刘人铜, 李施放 等. 油气管道二氧化碳腐蚀研究 [J]. 云南化工, 2019, 46(2): 177
|
[7] |
Wang C L, Xu X S, Liu C W, et al. Improvement on the CO2 corrosion prediction via considering the corrosion product performance [J]. Corros. Sci., 2023, 217: 111127
|
[8] |
Chen L J, Liu W, Dong B J, et al. Dynamic mechanism of corrosion products formed on carbon steel in CO2 environment: effect of silty sand [J]. Corros. Sci., 2023, 221: 111355
|
[9] |
Xiao W W, Zhang W B, Lin D Y, et al. Material selection and evaluation on internal coating of associated gas pipeline in H2S-CO2-O2 coexistence system in Tahe oilfield [J]. Mater. Prot., 2023, 56(2): 44
|
[9] |
肖雯雯, 张文博, 林德云 等. 塔河油田H2S-CO2-O2共存体系下伴生气管道选材和内涂层评价 [J]. 材料保护, 2023, 56(2): 44
|
[10] |
Tan J L, Li D J, Yu Y S, et al. Research on carburization resistance of austenitic heat resistant steels [J]. J. Dalian Univ. Technol., 1988, 28(4): 37
|
[10] |
谭家隆, 李德俊, 于永泗 等. 奥氏体耐热钢抗渗碳性能的研究 [J]. 大连理工大学学报, 1988, 28(4): 37
|
[11] |
Li C S, Yang Y S. Coking and carburizing behaviors of metal materials in high temperature carbon-containing atmosphere [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 188
|
[11] |
李处森, 杨院生. 金属材料在高温碳气氛中的结焦与渗碳行为 [J]. 中国腐蚀与防护学报, 2004, 24: 188
|
[12] |
Li C S, Yang Y S, Wu X Q. Analysis of coking and carburizing of HP heat-resistant steel [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 286
|
[12] |
李处森, 杨院生, 吴欣强. HP耐热钢结焦、渗碳的原因分析 [J]. 中国腐蚀与防护学报, 2002, 22: 286
|
[13] |
Grabke H J. Carburisation and metal dusting of steels and high-temperature alloys by hydrocarbons [A]. HarstonJD, RopitalF. Corrosion in Refineries [M]. Cambridge: Woodhead Publishing, 2007: 1
|
[14] |
Shen L M, Gong J M, Jiang Y, et al. Damage prediction of HP40Nb steel with coupled creep and carburization based on the continuum damage mechanics [J]. Acta Metall. Sin. (Engl. Lett.), 2012, 25: 279
|
[15] |
Jin P B. Effect of high temperature and complex environment on performance of ethylene cracking furnace tube [D]. Xuzhou: China University of Mining and Technology, 2017: 52
|
[15] |
金沛斌. 高温复杂环境对乙烯裂解炉管性能影响分析 [D]. 徐州: 中国矿业大学, 2017: 52
|
[16] |
Zou Z P, Wang Y F, Yao L C, et al. Progress in research of closed supercritical carbon dioxide Brayton cycle system [J]. J. Beijing Univ. Aeronaut. Astronaut., 2022, 48: 1643
|
[16] |
邹正平, 王一帆, 姚李超 等. 超临界二氧化碳闭式布莱顿循环系统研究进展 [J]. 北京航空航天大学学报, 2022, 48: 1643
|
[17] |
Liu G X, Yi J W, Li G, et al. Study on control strategy of natural circulation lead-cooled fast reactor coupled with S-CO2 Brayton cycle [J]. Nucl. Power Eng., 2023, 44(4): 138
|
[17] |
刘桂秀, 易经纬, 李 根 等. 耦合S-CO2布雷顿循环的自然循环铅冷快堆控制策略研究 [J]. 核动力工程, 2023, 44(4): 138
|
[18] |
Xiao B, Li K Y, Wang B H, et al. Corrosion behavior of various high-temperature materials in supercritical carbon dioxide [J]. Proc. CSEE, 2023, 43: 4198
|
[18] |
肖 博, 李开洋, 王碧辉 等. 多种高温金属材料在超临界二氧化碳中的腐蚀行为 [J]. 中国电机工程学报, 2023, 43: 4198
|
[19] |
Xiao B, Wang B H, Cen D L, et al. Study on corrosion characteristics of nickel-based alloy Inconel 617 in high-temperature supercritical carbon dioxide [J]. J. Chin. Soc. Power Eng., 2023, 43: 406
|
[19] |
肖 博, 王碧辉, 岑栋梁 等. 镍基合金Inconel 617在高温超临界CO2下的腐蚀特性研究 [J]. 动力工程学报, 2023, 43: 406
|
[20] |
Firouzdor V, Sridharan K, Cao G, et al. Corrosion of a stainless steel and nickel-based alloys in high temperature supercritical carbon dioxide environment [J]. Corros. Sci., 2013, 69: 281
|
[21] |
He L F, Roman P, Leng B, et al. Corrosion behavior of an alumina forming austenitic steel exposed to supercritical carbon dioxide [J]. Corros. Sci., 2014, 82: 67
|
[22] |
Xu Z Y, Yang Y Y, Mao S J, et al. Review on corrosion of alloys for application in supercritical carbon dioxide Brayton cycle [J]. Heliyon, 2023, 9: e22169
|
[23] |
Shi L, Zhao J Q, Liu B, et al. Development strategy of key materials technology for the high temperature gas-cooled reactor [J]. J. Tsinghua Univ. (Sci. Technol.), 2021, 61: 270
|
[23] |
史 力, 赵加清, 刘 兵 等. 高温气冷堆关键材料技术发展战略 [J]. 清华大学学报(自然科学版), 2021, 61: 270
|
[24] |
Huang J Y, Lu J T, Xing R H, et al. Carbonization corrosion behavior of Incoloy800H alloy used for heat transfer tube in a simulated graphite dust environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 365
|
[24] |
黄锦阳, 鲁金涛, 邢瑞华 等. 传热管用Incoloy800H合金在模拟石墨粉尘环境中的碳化行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 365
doi: 10.11902/1005.4537.2022.094
|
[25] |
Cerullo N, Lomonaco G. Corrosion issues in high temperature gas-cooled reactor (HTR) systems [A]. Féron D. Nuclear Corrosion Science and Engineering [M]. Cambridge: Woodhead Publishing, 2012: 731
|
[26] |
Wang M, Wang Q L, Yang J W, et al. Failure analysis of chute feeder carburization corrosion in blast furnace [J]. Phys. Exam. Test., 2011, 29(6): 35
|
[26] |
王 猛, 王全礼, 杨建炜 等. 高炉布料滑槽金属碳化腐蚀失效分析 [J]. 物理测试, 2011, 29(6): 35
|
[27] |
Fang X D, Wang Y Z, Bao H S, et al. Hot corrosion behaviors of austenitic heat-resistant steels S31042, S31035, and C-HRA-5 in flue gas environment of ultra-supercritical coal-fired boilers [J]. Therm. Power Gener., 2023, 52(1): 111
|
[27] |
方旭东, 王雨舟, 包汉生 等. 超超临界锅炉烟气环境中S31042、S31035、C-HRA-5奥氏体耐热钢热腐蚀行为研究 [J]. 热力发电, 2023, 52(1): 111
|
[28] |
Huang J Y, Lu J T, Yang Z, et al. Study on coal ash/gas corrosion resistance of Ni-Fe based superalloy with different microstructure [J]. Proc. CSEE, 2018, 38: 6640
|
[28] |
黄锦阳, 鲁金涛, 杨 征 等. 不同组织状态的镍-铁基高温合金耐烟灰/气腐蚀性能研究 [J]. 中国电机工程学报, 2018, 38: 6640
|
[29] |
Li G, Fu Y C, La P Q, et al. Corrosion assessment and mechanisms of stainless steel in molten salt for solar thermal power generation [J]. J. Mater. Eng..
|
[29] |
李 广, 付一川, 喇培清 等. 光热发电用不锈钢的熔盐腐蚀评价及机理 [J]. 材料工程.
|
[30] |
Lahaye J, Badie P, Ducret J. Mechanism of carbon formation during steamcracking of hydrocarbons [J]. Carbon, 1977, 15(2): 87
|
[31] |
Baker R T K. Catalytic growth of carbon filaments [J]. Carbon, 1989, 27: 315
|
[32] |
Snoeck J W, Froment G F, Fowles M. Filamentous carbon formation and gasification: thermodynamics, driving force, nucleation, and steady-state growth [J]. J. Catal., 1997, 169: 240
|
[33] |
Wu X Q, Yang Y S, Zhan Q, et al. Surface coking behavior on 25Cr35Ni heat-resistant alloy [J]. Corros. Sci. Prot. Technol., 1999, 11: 274
|
[33] |
吴欣强, 杨院生, 詹 倩 等. 25Cr35Ni耐热合金表面结焦机制 [J]. 腐蚀科学与防护技术, 1999, 11: 274
|
[34] |
Wang F H. Corrosion of materials in carbonaceous atmospheres at high temperatures [J]. Corros. Sci. Prot. Technol., 1996, 8: 296
|
[34] |
王福会. 金属材料在高温含碳气氛中的腐蚀 [J]. 腐蚀科学与防护技术, 1996, 8: 296
|
[35] |
Young D J. Corrosion by carbon [A]. Young D J. High Temperature Oxidation and Corrosion of Metals [M]. 2nd ed. Amsterdam: Elsevier, 2016: 431
|
[36] |
Grabke H J. Carburization: A High Temperature Corrosion Phenomenon [M]. St. Louis: MTI Publications, 1998
|
[37] |
Grabke H J, Wolf I. Carburization and oxidation [J]. Mater. Sci. Eng., 1987, 87: 23
|
[38] |
Grabke H J, Krajak R, Müller-Lorenz E M. Metal dusting of high temperature alloys [J]. Mater. Corros., 1993, 44: 89
|
[39] |
Grabke H J, Müller-Lorenz E M. Protection of high alloy steels against metal dusting by oxide scales [J]. Mater. Corros., 1998, 49: 317
|
[40] |
Wang M Y, Liang Z Y, Gui Y, et al. Effect of corrosion behavior on mechanical properties of alloy in supercritical CO2 environment [J]. Proc. CSEE, 2023, 43: 6709
|
[40] |
王梦瑶, 梁志远, 桂 雍 等. 超临界CO2腐蚀对耐热材料力学性能影响研究进展 [J]. 中国电机工程学报, 2023, 43: 6709
|
[41] |
Qi J, Sheng G W, Liu C H, et al. Atomistic modeling of oxide-carbide growth on FeCr alloy surface in high-temperature CO2 [J]. Corros. Sci., 2022, 204: 110391
|
[42] |
Guo T S, Liang Z Y, Zhao Q X. Study on corrosion kinetics and product thermodynamics of materials in supercritical CO2 [J]. J. Xi'an Jiaotong Univ., 2023, 57(12): 136
|
[42] |
郭亭山, 梁志远, 赵钦新. 超临界CO2材料腐蚀过程动力学与产物热力学研究 [J]. 西安交通大学学报, 2023, 57(12): 136
|
[43] |
Fernandes F A P, Totten G E, Gallego J, et al. Plasma nitriding and nitrocarburising of a supermartensitic stainless steel [J]. Int. Heat Treat. Surf. Eng., 2012, 6: 24
|
[44] |
Shi Y. Effect of alloy elements on the formation and properties of "expanded" α phase on stainless steel [D]. Harbin: Harbin Engineering University, 2020
|
[44] |
石 宇. 合金元素对不锈钢表面“膨胀”α相形成及性能的影响研究 [D]. 哈尔滨: 哈尔滨工程大学, 2020
|
[45] |
Wang J. Study on the gas nitriding/nitrocarburizing process and the modification of nitrocarburized layers of low-carbon steel [D]. Changsha: Hunan University, 2016
|
[45] |
王 津. 低碳钢气体渗氮/氮碳共渗工艺及其渗层改性研究 [D]. 长沙: 湖南大学, 2016
|
[46] |
Li B Z, Li C S, Li Z X, et al. Microstructure and mechanical properties of Fe-Cr-2Ni-Mo-V steel in carburizing process [J]. Procedia Manuf., 2018, 15: 1612
|
[47] |
Cheng R, Tian Y, Song C W, et al. Effect of vacuum low pressure carburizing on microstructure and properties of austenitic stainless steels 304 and 316L [J]. Heat Treat. Met., 2022, 47(9): 1
doi: 10.13251/j.issn.0254-6051.2022.09.001
|
[47] |
程 茹, 田 勇, 宋超伟 等. 真空低压渗碳对304与316L奥氏体不锈钢组织和性能的影响 [J]. 金属热处理, 2022, 47(9): 1
|
[48] |
Song R K, Zhang M C, Peng Y C, et al. High temperature oxidation and carburizing mechanisms of Cr35Ni45 heat-resistant steel under service conditions [J]. J. Univ. Sci. Technol. Beijing, 2014, 36: 1045
|
[48] |
宋若康, 张麦仓, 彭以超 等. Cr35Ni45钢高温长期服役过程的氧化与渗碳机理 [J]. 北京科技大学学报, 2014, 36: 1045
|
[49] |
Liu S, Guo Q Q, Wu X F, et al. Carburization of three Fe-19Ni-21Cr-xAl (x = 0, 2, 6 at.%) alloys at 900 ℃ in oxygen-contaminated CH4/H2 atmospheres [J]. Corros. Sci., 2016, 111: 436
|
[50] |
Pang K J, Yuan H. Mechanical behavior and fatigue performance of carburized steel specimens [J]. Appl. Mech. Mater., 2016, 853: 72
|
[51] |
Aramide F O, Ibitoye S A, Oladele I O, et al. Effects of carburization time and temperature on the mechanical properties of carburized mild steel, using activated carbon as carburizer [J]. Mater. Res., 2009, 12: 483
|
[52] |
Sudha C, Sivai Bharasi N, Anand R, et al. Carburization behavior of AISI 316LN austenitic stainless steel-experimental studies and modeling [J]. J. Nucl. Mater., 2010, 402: 186
|
[53] |
Loganathan T M, Purbolaksono J, Inayat-Hussain J I, et al. Effects of carburization on expected fatigue life of alloys steel shafts [J]. Mater. Des., 2011, 32: 3544
|
[54] |
Li J, Zhan Y J, Li J, et al. Mechanical properties and microstructure evolution of domestic Incoloy 800H during aging in helium [J]. Therm. Power Gener., 2020, 49(11): 120
|
[54] |
李 江, 詹英杰, 李 季 等. 国产Incoloy 800H合金在氦气中时效后力学性能及微观组织演化 [J]. 热力发电, 2020, 49(11): 120
|
[55] |
Hamzah E, Mudang M, Jenq A K, et al. High temperature creep behavior of austenitic Fe-Ni-Cr alloy [J]. Adv. Mater. Res., 2013, 686: 170
|
[56] |
Han Z Y, Xie G S, Cao L W, et al. Material degradation and embrittlement evaluation of ethylene cracking furnace tubes after long term service [J]. Eng. Fail. Anal., 2019, 97: 568
|
[57] |
Ribeiro A F, Borges R M T, de Almeida L H. Phase transformation in heat resistant steels observed by STEM (NbTi)C-NiNbSi(G-Phase) [J]. Acta Microsc., 2002, 11: 59
|
[58] |
Kenik E A, Maziasz P J, Swindeman R W, et al. Structure and phase stability in a cast modified-HP austenite after long-term ageing [J]. Scr. Mater., 2003, 49: 117
|
[59] |
Huang Z R, You Y K. Review of carburization corrosion and protection of metal materials [J]. J. Jiangsu Inst. Petrochem. Technol., 2001, 13(2): 9
|
[59] |
黄志荣, 尤一匡. 金属材料的碳化腐蚀及防护研究进展 [J]. 江苏石油化工学院学报, 2001, 13(2): 9
|
[60] |
Ma Z D D, Cong S, Chen Y, et al. Corrosion behavior of alumina-forming austenitic heat resistant steel in supercritical carbon dioxide [J]. Nucl. Power Eng., 2022, 43(6): 101
|
[60] |
马赵丹丹, 丛 硕, 陈 勇 等. 含铝奥氏体耐热钢在超临界二氧化碳中的腐蚀行为 [J]. 核动力工程, 2022, 43(6): 101
|
[61] |
Chen L Z, He Y J, Fu X G, et al. Research progress on the corrosion resistance of alumina forming austenitic steel in lead⁃based liquid metals [J]. Mater. Rep., 2023, 37(suppl.2) : 413
|
[61] |
陈灵芝, 和雅洁, 付晓刚 等. 新型含铝奥氏体合金的耐铅基液态金属腐蚀性能研究进展 [J]. 材料导报, 2023, 37(): 413
|
[62] |
Huang Z R, Ma L B, Li P N. Pack aluminization of HK40 steel and evaluation of carburization resistance [J]. J. Mater. Eng., 2005, 33(1): 25
|
[62] |
黄志荣, 马刘宝, 李培宁. HK40钢的渗铝新工艺及抗碳化腐蚀性能研究 [J]. 材料工程, 2005, 33(1): 25
|
[63] |
Huang J Y, Zhong Q, Huang H G, et al. Structure analysis of aluminized coatings on P92 steel prepared by pack cementation aluminizing and vapor aluminizing [J]. Therm. Power Gener., 2020, 49(3): 124
|
[63] |
黄锦阳, 钟 强, 黄浩刚 等. P92耐热钢粉末包埋渗铝与化学气相渗铝涂层组织结构研究 [J]. 热力发电, 2020: 49(3): 124
|
[64] |
Lu J T, Zhu S L, Wang F H. Hot corrosion performance of Al-Cr coatings prepared by pack cementation [J]. Corros. Sci. Prot. Technol., 2011, 23: 399
|
[64] |
鲁金涛, 朱圣龙, 王福会. Al-Cr涂层的制备及抗热腐蚀性能研究 [J]. 腐蚀科学与防护技术, 2011, 23: 399
|
[65] |
Li Y, Lu J T, Yang Z, et al. Corrosion behavior of aluminide coating modified super304H steel in simulated boiler coal-ash/gas environments [J]. Mater. Mech. Eng., 2017, 41(5): 89
doi: 10.11973/jxgccl201705018
|
[65] |
李 琰, 鲁金涛, 杨 珍 等. 铝化物涂层改性Super304H钢在模拟锅炉煤灰/气环境中的腐蚀行为 [J]. 机械工程材料, 2017, 41(5): 89
|
[66] |
Li Y Y. Experimental research on corrosion resistance of austenitic steel in supercritical carbon dioxide environment [D]. Beijing: North China Electric Power University (Beijing), 2022
|
[66] |
李宇旸. 奥氏体钢在超临界二氧化碳环境下的耐腐蚀性能试验研究 [D]. 北京: 华北电力大学(北京), 2022
|
[67] |
Ropital F. Environmental degradation in hydrocarbon fuel processing plant: issues and mitigation [A]. Khan M R. Advances in Clean Hydrocarbon Fuel Processing: Science and Technology [M]. Oxford: Woodhead Publishing, 2011: 437
|
[68] |
Fadhil A A, Khadom A A, Fu C Y, et al. Ceramics coating materials for corrosion control of crude oil distillation column: experimental and theoretical studies [J]. Corros. Sci., 2020, 162: 108220
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|