Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (3): 589-601     CSTR: 32134.14.1005.4537.2024.194      DOI: 10.11902/1005.4537.2024.194
  综合评述 本期目录 | 过刊浏览 |
金属材料的高温碳化腐蚀与防护研究现状
沈晨1,2, 黄锦阳2(), 张醒兴2, 胡新元2, 朱明1, 鲁金涛2
1.西安科技大学材料科学与工程学院 西安 710054
2.西安热工研究院有限公司 高效灵活煤电及碳捕集利用全国重点实验室 西安 710054
Research Progress of Carbonization-corrosion and Protection of Alloy Steels
SHEN Chen1,2, HUANG Jinyang2(), ZHANG Xingxing2, HU Xinyuan2, ZHU Ming1, LU Jintao2
1.College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
2.National Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, Xi'an Thermal Power Research Institute Co., Ltd., Xi'an 710054, China
引用本文:

沈晨, 黄锦阳, 张醒兴, 胡新元, 朱明, 鲁金涛. 金属材料的高温碳化腐蚀与防护研究现状[J]. 中国腐蚀与防护学报, 2025, 45(3): 589-601.
Chen SHEN, Jinyang HUANG, Xingxing ZHANG, Xinyuan HU, Ming ZHU, Jintao LU. Research Progress of Carbonization-corrosion and Protection of Alloy Steels[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 589-601.

全文: PDF(12066 KB)   HTML
摘要: 

能源化工领域多使用合金钢作为结构材料,在服役过程中遇到碳含量较高的工作气氛,常常会出现碳化腐蚀的情况。由于现有的研究多为深入研究腐蚀现象,对碳化腐蚀的整体综述较少,因此本文从国内外碳化腐蚀研究现状、碳化腐蚀机理综述和碳化腐蚀的防护3个维度对碳化腐蚀的现有研究进行了讨论,主要分析了易出现碳化腐蚀的高温乙烯裂解管、超临界CO2机组等不同服役环境下碳化腐蚀的机理研究,综合了碳化对钢材合金组织及力学性能影响方面的研究,讨论了改善合金服役环境、优化合金成分配方、制备合金耐蚀涂层等防护措施,展望了碳化腐蚀与防护的发展方向。目前,碳化腐蚀仍是能源化工领域的研究重点,尤其是超临界CO2和高温气冷堆等新型能源装备系统存在的碳化腐蚀现象还有待进一步研究;高温金属防护涂层作为比较适合应对碳化腐蚀的有效措施之一,其抗碳化腐蚀的能力需进一步深入研究。

关键词 高温腐蚀碳化高温气冷堆奥氏体耐热钢晶界腐蚀涂层防护    
Abstract

Alloy steels are widely adopted as structural material in the field of energy and chemical industries, which may encounter atmospheres of high carbon content during service at high temperatures, as a subsequence, often suffer from carbonization-corrosion. Due to the fact that although the existing research covers many common corrosion phenomena, however the overall review of carbonization corrosion is less. Therefore, this paper tries to review the topic of carbonization-corrosion from three aspects : the current research status of carbonization corrosion at home and abroad, the mechanism of carbonization-corrosion, and the counter measures against carbonization-corrosion. The relevant mechanism of carbonization-corrosion encountered in different service environments, such as high-temperature ethylene cracking pipe and supercritical CO2 unit etc., and the influence of carbonization on the microstructure and mechanical properties of alloy steels were mainly reviewed and analyzed. The counter measures such as adjusting the service environment, optimizing the composition of alloy steels and preparing corrosion resistant coating were discussed. The further research directions related with carbonization-corrosion and protection measures were prospected. At present, carbonization is still the focus of research in the field of energy and chemical industries, especially the carbonization related phenomena existing in new energy equipment systems such as supercritical CO2 and high-temperature gas-cooled reactors need further study. Protective coating composed of high temperature alloys is one of the effective measures suitable for resisting carbonization corrosion, nevertheless its ability to resist carbonization needs further research.

Key wordshigh temperature corrosion    carburization    high temperature gas cooled reactor    austenitic heat resistant steel    grain boundary corrosion    coating protection
收稿日期: 2024-07-01      32134.14.1005.4537.2024.194
ZTFLH:  TG172  
基金资助:中国华能集团有限公司重点科技项目(HNKJ23-H56)
通讯作者: 黄锦阳,E-mail:huangjinyang@tpri.com.cn,研究方向为电站材料高温腐蚀与防护
Corresponding author: HUANG Jinyang, E-mail: huangjinyang@tpri.com.cn
作者简介: 沈 晨,男,1999年生,硕士生
图1  裂解炉管的渗碳现象及渗碳微观结构的显微照片呈现内部裂纹,在1100 ℃左右形成了较大的内部碳化物[13]
图2  应用于S-CO2的紧凑型换热器[16]
图3  高温气冷堆燃料球结构及球床式气冷堆工作示意图
图4  布料滑槽腐蚀失效情况[26]
图5  丝状焦炭顶部存在Fe3C颗粒:SEM图像,TEM亮场图像SAD模式及传质模型[35]
图6  铁素体/马氏体耐热钢碳化腐蚀原理[5]
图7  Fe-Cr合金表面CO2的反应模型[41]
图8  均匀氧化层的Fe-Cr合金氧化渗碳机理示意图[41]
图9  T92钢在600 ℃下S-CO2环境下的初始模型以及600 ℃下反应时间为5000 ps时沿z方向的面分布及线分布规律[42]
图10  T92钢在15 MPa下S-CO2环境下Gibbs自由能随温度变化的关系和T92钢在600 ℃下S-CO2的Cr-C-O平衡相图[42]
图11  硫分压对金属粉化的影响[35]
[1] Shi Q, Zhang T Q, Yu S Y. Resuspension characteristic of dust particles in steam generator of high temperature gas-cooled reactor [J]. China Powder Sci. Technol., 2023, 29(4): 1
[1] 石 倩, 张天琦, 于溯源. 高温气冷堆蒸汽发生器中粉尘颗粒的重悬浮特性 [J]. 中国粉体技术, 2023, 29(4): 1
[2] Luo X W. Research on graphite dust behavior in 10MW high temperature gas-cooled reactor [D]. Beijing: Tsinghua University, 2004
[2] 雒晓卫. 10MW高温气冷堆中石墨粉尘行为研究 [D]. 北京: 清华大学, 2004
[3] Guo L X, Liang D, Wang X J, et al. Graphite dust deposition in high temperature gas cooled reactor [J]. China Powder Sci. Technol., 2019, 25(2): 47
[3] 郭丽潇, 梁 栋, 王秀娟 等. 高温气冷堆蒸汽发生器中的石墨粉尘沉积 [J]. 中国粉体技术, 2019, 25(2): 47
[4] Yang Z, Lu J T, Zhang P, et al. Microstructure and steam oxidation performance of the aluminium diffusion coating on Super304H steel [J]. Surf. Technol., 2020, 49(1): 64
[4] 杨 珍, 鲁金涛, 张 鹏 等. Super304H钢表面铝扩散涂层的组织结构和抗蒸汽氧化性能 [J]. 表面技术, 2020, 49(1): 64
[5] Xiao B, Zhu Z L, Li R T, et al. Research status of high temperature corrosion of candidate materials for power generation system using supercritical carbon dioxide as working fluid [J]. Therm. Power Gener., 2020, 49(10): 30
[5] 肖 博, 朱忠亮, 李瑞涛 等. 超临界二氧化碳工质发电系统候选材料高温腐蚀研究现状与进展 [J]. 热力发电, 2020, 49(10): 30
[6] Jia Y Q, Liu R T, Li S F, et al. Study on carbon dioxide corrosion of oil and gas pipelines [J]. Yunnan Chem. Technol., 2019, 46(2): 177
[6] 贾逸群, 刘人铜, 李施放 等. 油气管道二氧化碳腐蚀研究 [J]. 云南化工, 2019, 46(2): 177
[7] Wang C L, Xu X S, Liu C W, et al. Improvement on the CO2 corrosion prediction via considering the corrosion product performance [J]. Corros. Sci., 2023, 217: 111127
[8] Chen L J, Liu W, Dong B J, et al. Dynamic mechanism of corrosion products formed on carbon steel in CO2 environment: effect of silty sand [J]. Corros. Sci., 2023, 221: 111355
[9] Xiao W W, Zhang W B, Lin D Y, et al. Material selection and evaluation on internal coating of associated gas pipeline in H2S-CO2-O2 coexistence system in Tahe oilfield [J]. Mater. Prot., 2023, 56(2): 44
[9] 肖雯雯, 张文博, 林德云 等. 塔河油田H2S-CO2-O2共存体系下伴生气管道选材和内涂层评价 [J]. 材料保护, 2023, 56(2): 44
[10] Tan J L, Li D J, Yu Y S, et al. Research on carburization resistance of austenitic heat resistant steels [J]. J. Dalian Univ. Technol., 1988, 28(4): 37
[10] 谭家隆, 李德俊, 于永泗 等. 奥氏体耐热钢抗渗碳性能的研究 [J]. 大连理工大学学报, 1988, 28(4): 37
[11] Li C S, Yang Y S. Coking and carburizing behaviors of metal materials in high temperature carbon-containing atmosphere [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 188
[11] 李处森, 杨院生. 金属材料在高温碳气氛中的结焦与渗碳行为 [J]. 中国腐蚀与防护学报, 2004, 24: 188
[12] Li C S, Yang Y S, Wu X Q. Analysis of coking and carburizing of HP heat-resistant steel [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 286
[12] 李处森, 杨院生, 吴欣强. HP耐热钢结焦、渗碳的原因分析 [J]. 中国腐蚀与防护学报, 2002, 22: 286
[13] Grabke H J. Carburisation and metal dusting of steels and high-temperature alloys by hydrocarbons [A]. HarstonJD, RopitalF. Corrosion in Refineries [M]. Cambridge: Woodhead Publishing, 2007: 1
[14] Shen L M, Gong J M, Jiang Y, et al. Damage prediction of HP40Nb steel with coupled creep and carburization based on the continuum damage mechanics [J]. Acta Metall. Sin. (Engl. Lett.), 2012, 25: 279
[15] Jin P B. Effect of high temperature and complex environment on performance of ethylene cracking furnace tube [D]. Xuzhou: China University of Mining and Technology, 2017: 52
[15] 金沛斌. 高温复杂环境对乙烯裂解炉管性能影响分析 [D]. 徐州: 中国矿业大学, 2017: 52
[16] Zou Z P, Wang Y F, Yao L C, et al. Progress in research of closed supercritical carbon dioxide Brayton cycle system [J]. J. Beijing Univ. Aeronaut. Astronaut., 2022, 48: 1643
[16] 邹正平, 王一帆, 姚李超 等. 超临界二氧化碳闭式布莱顿循环系统研究进展 [J]. 北京航空航天大学学报, 2022, 48: 1643
[17] Liu G X, Yi J W, Li G, et al. Study on control strategy of natural circulation lead-cooled fast reactor coupled with S-CO2 Brayton cycle [J]. Nucl. Power Eng., 2023, 44(4): 138
[17] 刘桂秀, 易经纬, 李 根 等. 耦合S-CO2布雷顿循环的自然循环铅冷快堆控制策略研究 [J]. 核动力工程, 2023, 44(4): 138
[18] Xiao B, Li K Y, Wang B H, et al. Corrosion behavior of various high-temperature materials in supercritical carbon dioxide [J]. Proc. CSEE, 2023, 43: 4198
[18] 肖 博, 李开洋, 王碧辉 等. 多种高温金属材料在超临界二氧化碳中的腐蚀行为 [J]. 中国电机工程学报, 2023, 43: 4198
[19] Xiao B, Wang B H, Cen D L, et al. Study on corrosion characteristics of nickel-based alloy Inconel 617 in high-temperature supercritical carbon dioxide [J]. J. Chin. Soc. Power Eng., 2023, 43: 406
[19] 肖 博, 王碧辉, 岑栋梁 等. 镍基合金Inconel 617在高温超临界CO2下的腐蚀特性研究 [J]. 动力工程学报, 2023, 43: 406
[20] Firouzdor V, Sridharan K, Cao G, et al. Corrosion of a stainless steel and nickel-based alloys in high temperature supercritical carbon dioxide environment [J]. Corros. Sci., 2013, 69: 281
[21] He L F, Roman P, Leng B, et al. Corrosion behavior of an alumina forming austenitic steel exposed to supercritical carbon dioxide [J]. Corros. Sci., 2014, 82: 67
[22] Xu Z Y, Yang Y Y, Mao S J, et al. Review on corrosion of alloys for application in supercritical carbon dioxide Brayton cycle [J]. Heliyon, 2023, 9: e22169
[23] Shi L, Zhao J Q, Liu B, et al. Development strategy of key materials technology for the high temperature gas-cooled reactor [J]. J. Tsinghua Univ. (Sci. Technol.), 2021, 61: 270
[23] 史 力, 赵加清, 刘 兵 等. 高温气冷堆关键材料技术发展战略 [J]. 清华大学学报(自然科学版), 2021, 61: 270
[24] Huang J Y, Lu J T, Xing R H, et al. Carbonization corrosion behavior of Incoloy800H alloy used for heat transfer tube in a simulated graphite dust environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 365
[24] 黄锦阳, 鲁金涛, 邢瑞华 等. 传热管用Incoloy800H合金在模拟石墨粉尘环境中的碳化行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 365
doi: 10.11902/1005.4537.2022.094
[25] Cerullo N, Lomonaco G. Corrosion issues in high temperature gas-cooled reactor (HTR) systems [A]. Féron D. Nuclear Corrosion Science and Engineering [M]. Cambridge: Woodhead Publishing, 2012: 731
[26] Wang M, Wang Q L, Yang J W, et al. Failure analysis of chute feeder carburization corrosion in blast furnace [J]. Phys. Exam. Test., 2011, 29(6): 35
[26] 王 猛, 王全礼, 杨建炜 等. 高炉布料滑槽金属碳化腐蚀失效分析 [J]. 物理测试, 2011, 29(6): 35
[27] Fang X D, Wang Y Z, Bao H S, et al. Hot corrosion behaviors of austenitic heat-resistant steels S31042, S31035, and C-HRA-5 in flue gas environment of ultra-supercritical coal-fired boilers [J]. Therm. Power Gener., 2023, 52(1): 111
[27] 方旭东, 王雨舟, 包汉生 等. 超超临界锅炉烟气环境中S31042、S31035、C-HRA-5奥氏体耐热钢热腐蚀行为研究 [J]. 热力发电, 2023, 52(1): 111
[28] Huang J Y, Lu J T, Yang Z, et al. Study on coal ash/gas corrosion resistance of Ni-Fe based superalloy with different microstructure [J]. Proc. CSEE, 2018, 38: 6640
[28] 黄锦阳, 鲁金涛, 杨 征 等. 不同组织状态的镍-铁基高温合金耐烟灰/气腐蚀性能研究 [J]. 中国电机工程学报, 2018, 38: 6640
[29] Li G, Fu Y C, La P Q, et al. Corrosion assessment and mechanisms of stainless steel in molten salt for solar thermal power generation [J]. J. Mater. Eng..
[29] 李 广, 付一川, 喇培清 等. 光热发电用不锈钢的熔盐腐蚀评价及机理 [J]. 材料工程.
[30] Lahaye J, Badie P, Ducret J. Mechanism of carbon formation during steamcracking of hydrocarbons [J]. Carbon, 1977, 15(2): 87
[31] Baker R T K. Catalytic growth of carbon filaments [J]. Carbon, 1989, 27: 315
[32] Snoeck J W, Froment G F, Fowles M. Filamentous carbon formation and gasification: thermodynamics, driving force, nucleation, and steady-state growth [J]. J. Catal., 1997, 169: 240
[33] Wu X Q, Yang Y S, Zhan Q, et al. Surface coking behavior on 25Cr35Ni heat-resistant alloy [J]. Corros. Sci. Prot. Technol., 1999, 11: 274
[33] 吴欣强, 杨院生, 詹 倩 等. 25Cr35Ni耐热合金表面结焦机制 [J]. 腐蚀科学与防护技术, 1999, 11: 274
[34] Wang F H. Corrosion of materials in carbonaceous atmospheres at high temperatures [J]. Corros. Sci. Prot. Technol., 1996, 8: 296
[34] 王福会. 金属材料在高温含碳气氛中的腐蚀 [J]. 腐蚀科学与防护技术, 1996, 8: 296
[35] Young D J. Corrosion by carbon [A]. Young D J. High Temperature Oxidation and Corrosion of Metals [M]. 2nd ed. Amsterdam: Elsevier, 2016: 431
[36] Grabke H J. Carburization: A High Temperature Corrosion Phenomenon [M]. St. Louis: MTI Publications, 1998
[37] Grabke H J, Wolf I. Carburization and oxidation [J]. Mater. Sci. Eng., 1987, 87: 23
[38] Grabke H J, Krajak R, Müller-Lorenz E M. Metal dusting of high temperature alloys [J]. Mater. Corros., 1993, 44: 89
[39] Grabke H J, Müller-Lorenz E M. Protection of high alloy steels against metal dusting by oxide scales [J]. Mater. Corros., 1998, 49: 317
[40] Wang M Y, Liang Z Y, Gui Y, et al. Effect of corrosion behavior on mechanical properties of alloy in supercritical CO2 environment [J]. Proc. CSEE, 2023, 43: 6709
[40] 王梦瑶, 梁志远, 桂 雍 等. 超临界CO2腐蚀对耐热材料力学性能影响研究进展 [J]. 中国电机工程学报, 2023, 43: 6709
[41] Qi J, Sheng G W, Liu C H, et al. Atomistic modeling of oxide-carbide growth on FeCr alloy surface in high-temperature CO2 [J]. Corros. Sci., 2022, 204: 110391
[42] Guo T S, Liang Z Y, Zhao Q X. Study on corrosion kinetics and product thermodynamics of materials in supercritical CO2 [J]. J. Xi'an Jiaotong Univ., 2023, 57(12): 136
[42] 郭亭山, 梁志远, 赵钦新. 超临界CO2材料腐蚀过程动力学与产物热力学研究 [J]. 西安交通大学学报, 2023, 57(12): 136
[43] Fernandes F A P, Totten G E, Gallego J, et al. Plasma nitriding and nitrocarburising of a supermartensitic stainless steel [J]. Int. Heat Treat. Surf. Eng., 2012, 6: 24
[44] Shi Y. Effect of alloy elements on the formation and properties of "expanded" α phase on stainless steel [D]. Harbin: Harbin Engineering University, 2020
[44] 石 宇. 合金元素对不锈钢表面“膨胀”α相形成及性能的影响研究 [D]. 哈尔滨: 哈尔滨工程大学, 2020
[45] Wang J. Study on the gas nitriding/nitrocarburizing process and the modification of nitrocarburized layers of low-carbon steel [D]. Changsha: Hunan University, 2016
[45] 王 津. 低碳钢气体渗氮/氮碳共渗工艺及其渗层改性研究 [D]. 长沙: 湖南大学, 2016
[46] Li B Z, Li C S, Li Z X, et al. Microstructure and mechanical properties of Fe-Cr-2Ni-Mo-V steel in carburizing process [J]. Procedia Manuf., 2018, 15: 1612
[47] Cheng R, Tian Y, Song C W, et al. Effect of vacuum low pressure carburizing on microstructure and properties of austenitic stainless steels 304 and 316L [J]. Heat Treat. Met., 2022, 47(9): 1
doi: 10.13251/j.issn.0254-6051.2022.09.001
[47] 程 茹, 田 勇, 宋超伟 等. 真空低压渗碳对304与316L奥氏体不锈钢组织和性能的影响 [J]. 金属热处理, 2022, 47(9): 1
[48] Song R K, Zhang M C, Peng Y C, et al. High temperature oxidation and carburizing mechanisms of Cr35Ni45 heat-resistant steel under service conditions [J]. J. Univ. Sci. Technol. Beijing, 2014, 36: 1045
[48] 宋若康, 张麦仓, 彭以超 等. Cr35Ni45钢高温长期服役过程的氧化与渗碳机理 [J]. 北京科技大学学报, 2014, 36: 1045
[49] Liu S, Guo Q Q, Wu X F, et al. Carburization of three Fe-19Ni-21Cr-xAl (x = 0, 2, 6 at.%) alloys at 900 ℃ in oxygen-contaminated CH4/H2 atmospheres [J]. Corros. Sci., 2016, 111: 436
[50] Pang K J, Yuan H. Mechanical behavior and fatigue performance of carburized steel specimens [J]. Appl. Mech. Mater., 2016, 853: 72
[51] Aramide F O, Ibitoye S A, Oladele I O, et al. Effects of carburization time and temperature on the mechanical properties of carburized mild steel, using activated carbon as carburizer [J]. Mater. Res., 2009, 12: 483
[52] Sudha C, Sivai Bharasi N, Anand R, et al. Carburization behavior of AISI 316LN austenitic stainless steel-experimental studies and modeling [J]. J. Nucl. Mater., 2010, 402: 186
[53] Loganathan T M, Purbolaksono J, Inayat-Hussain J I, et al. Effects of carburization on expected fatigue life of alloys steel shafts [J]. Mater. Des., 2011, 32: 3544
[54] Li J, Zhan Y J, Li J, et al. Mechanical properties and microstructure evolution of domestic Incoloy 800H during aging in helium [J]. Therm. Power Gener., 2020, 49(11): 120
[54] 李 江, 詹英杰, 李 季 等. 国产Incoloy 800H合金在氦气中时效后力学性能及微观组织演化 [J]. 热力发电, 2020, 49(11): 120
[55] Hamzah E, Mudang M, Jenq A K, et al. High temperature creep behavior of austenitic Fe-Ni-Cr alloy [J]. Adv. Mater. Res., 2013, 686: 170
[56] Han Z Y, Xie G S, Cao L W, et al. Material degradation and embrittlement evaluation of ethylene cracking furnace tubes after long term service [J]. Eng. Fail. Anal., 2019, 97: 568
[57] Ribeiro A F, Borges R M T, de Almeida L H. Phase transformation in heat resistant steels observed by STEM (NbTi)C-NiNbSi(G-Phase) [J]. Acta Microsc., 2002, 11: 59
[58] Kenik E A, Maziasz P J, Swindeman R W, et al. Structure and phase stability in a cast modified-HP austenite after long-term ageing [J]. Scr. Mater., 2003, 49: 117
[59] Huang Z R, You Y K. Review of carburization corrosion and protection of metal materials [J]. J. Jiangsu Inst. Petrochem. Technol., 2001, 13(2): 9
[59] 黄志荣, 尤一匡. 金属材料的碳化腐蚀及防护研究进展 [J]. 江苏石油化工学院学报, 2001, 13(2): 9
[60] Ma Z D D, Cong S, Chen Y, et al. Corrosion behavior of alumina-forming austenitic heat resistant steel in supercritical carbon dioxide [J]. Nucl. Power Eng., 2022, 43(6): 101
[60] 马赵丹丹, 丛 硕, 陈 勇 等. 含铝奥氏体耐热钢在超临界二氧化碳中的腐蚀行为 [J]. 核动力工程, 2022, 43(6): 101
[61] Chen L Z, He Y J, Fu X G, et al. Research progress on the corrosion resistance of alumina forming austenitic steel in lead⁃based liquid metals [J]. Mater. Rep., 2023, 37(suppl.2) : 413
[61] 陈灵芝, 和雅洁, 付晓刚 等. 新型含铝奥氏体合金的耐铅基液态金属腐蚀性能研究进展 [J]. 材料导报, 2023, 37(): 413
[62] Huang Z R, Ma L B, Li P N. Pack aluminization of HK40 steel and evaluation of carburization resistance [J]. J. Mater. Eng., 2005, 33(1): 25
[62] 黄志荣, 马刘宝, 李培宁. HK40钢的渗铝新工艺及抗碳化腐蚀性能研究 [J]. 材料工程, 2005, 33(1): 25
[63] Huang J Y, Zhong Q, Huang H G, et al. Structure analysis of aluminized coatings on P92 steel prepared by pack cementation aluminizing and vapor aluminizing [J]. Therm. Power Gener., 2020, 49(3): 124
[63] 黄锦阳, 钟 强, 黄浩刚 等. P92耐热钢粉末包埋渗铝与化学气相渗铝涂层组织结构研究 [J]. 热力发电, 2020: 49(3): 124
[64] Lu J T, Zhu S L, Wang F H. Hot corrosion performance of Al-Cr coatings prepared by pack cementation [J]. Corros. Sci. Prot. Technol., 2011, 23: 399
[64] 鲁金涛, 朱圣龙, 王福会. Al-Cr涂层的制备及抗热腐蚀性能研究 [J]. 腐蚀科学与防护技术, 2011, 23: 399
[65] Li Y, Lu J T, Yang Z, et al. Corrosion behavior of aluminide coating modified super304H steel in simulated boiler coal-ash/gas environments [J]. Mater. Mech. Eng., 2017, 41(5): 89
doi: 10.11973/jxgccl201705018
[65] 李 琰, 鲁金涛, 杨 珍 等. 铝化物涂层改性Super304H钢在模拟锅炉煤灰/气环境中的腐蚀行为 [J]. 机械工程材料, 2017, 41(5): 89
[66] Li Y Y. Experimental research on corrosion resistance of austenitic steel in supercritical carbon dioxide environment [D]. Beijing: North China Electric Power University (Beijing), 2022
[66] 李宇旸. 奥氏体钢在超临界二氧化碳环境下的耐腐蚀性能试验研究 [D]. 北京: 华北电力大学(北京), 2022
[67] Ropital F. Environmental degradation in hydrocarbon fuel processing plant: issues and mitigation [A]. Khan M R. Advances in Clean Hydrocarbon Fuel Processing: Science and Technology [M]. Oxford: Woodhead Publishing, 2011: 437
[68] Fadhil A A, Khadom A A, Fu C Y, et al. Ceramics coating materials for corrosion control of crude oil distillation column: experimental and theoretical studies [J]. Corros. Sci., 2020, 162: 108220
[1] 李开洋, 吴悠, 张冠霖, 张乃强. 高温超临界CO2 结构材料环境致裂研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 61-68.
[2] 占阜元, 刘宣义, 黄世福, 刘帅岐, 徐媛媛, 潘喜桂, 何华林, 刘光明. SA210C钢在涂覆不同质量比混合盐膜下的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(6): 1656-1662.
[3] 李建呈, 赵京, 谢新, 王金龙, 陈明辉, 王福会. 钛合金表面磷酸盐涂层的制备及在高温盐-水蒸气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[4] 曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[5] 郭涛, 黄峰, 胡骞, 刘静. 9Ni钢铸坯在900~1250 ℃空气中的高温氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(4): 882-889.
[6] 柳志浩, 刘光明, 何思凡, 董猛, 李玉, 李富天, 祝婷. F22母材与焊缝在模拟沿海空气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 594-600.
[7] 黄锦阳, 鲁金涛, 邢瑞华, 张醒兴, 黄春林, 徐雅欣. 传热管用Incoloy800H合金在模拟石墨粉尘环境中的碳化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 365-370.
[8] 王碧辉, 肖博, 潘佩媛, 刘聚, 张乃强. 固体氧化物燃料电池金属连接体腐蚀研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 6-12.
[9] 官宇, 刘光明, 张民强, 刘欢欢, 柳志浩, 龚兵兵. Sanicro 25钢在高硫煤灰/模拟烟气中的高温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 681-686.
[10] 张陈扬, 刘慧丛, 韩东晓, 朱立群, 李卫平. 微米级SiC/Ni-Co-P复合镀层的制备及影响因素[J]. 中国腐蚀与防护学报, 2021, 41(5): 579-584.
[11] 陈土春, 向军淮, 江龙发, 熊剑, 白凌云, 徐勋虎, 徐鑫成. Q235钢在氧化性含Cl气氛中的高温腐蚀行为[J]. 中国腐蚀与防护学报, 2021, 41(4): 560-564.
[12] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[13] 谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[14] 付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[15] 施远,金洙吉,姜冠楠,刘作涛,周忠正,王泽北. YG15硬质合金电化学腐蚀机理研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.