Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (3): 387-394    DOI: 10.11902/1005.4537.2021.301
  中国腐蚀与防护学会杰出青年学术成就奖论文专栏 本期目录 | 过刊浏览 |
轻合金锆/钛基转化膜的设计及性能研究
杨延格1(), 曹京宜2, 王兴奇1, 方志刚2, 于宏飞1, 于宝兴1, 王福会3
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.中国人民解放军92228部队 北京 100072
3.沈阳材料科学国家研究中心 东北大学联合研究分部 沈阳 110819
Design and Performance of Zr- and/or Ti-based Chemical Conversion Coatings for Light Alloys
YANG Yange1(), CAO Jingyi2, WANG Xingqi1, FANG Zhigang2, YU Hongfei1, YU Baoxing1, WANG Fuhui3
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.Unit 92228, People's Liberation Army, Beijing 100072, China
3.Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
全文: PDF(10833 KB)   HTML
摘要: 

通过对传统锆/钛基转化膜成膜机理的分析,提出了提升锆/钛基转化膜性能的设计理念,并分别在5083铝合金和AZ91D镁合金上进行了实践,显著提升了合金基体的耐腐蚀性能及其与有机涂层的附着性能。通过解析影响锆/钛基转化膜性能的关键因素,指出了当前锆/钛基转化膜研究的不足及其未来的发展方向。

关键词 铝合金镁合金转化膜锆/钛基    
Abstract

Zr- and/or Ti-based chemical conversion coating (ZrTiCC) is an important and representative chromium-free surface modification technology for Al-alloys and Mg-alloys. ZrTiCC has reached the maturity of final commercial utilization in industry. The design concept to improve the performance of ZrTiCC was proposed based on the deposition mechanism analysis of conventional ZrTiCC in this paper. Moreover, the design concept was applied on the 5083 Al-alloy and AZ91D Mg-alloy. The results indicated that both the corrosion resistance of the coated substrates and the adhesion property with organic coating were significantly improved. Finally, the key factors affecting the performance of ZrTiCC were analyzed and the future development trend was expected.

Key wordsMg-alloy    Al-alloy    conversion coating    Zr- and/or Ti-based
收稿日期: 2021-10-26     
ZTFLH:  TG174  
基金资助:国家重点研发计划(2019YFC0312100);民机专项
通讯作者: 杨延格     E-mail: ygyang@imr.ac.cn
Corresponding author: YANG Yange     E-mail: ygyang@imr.ac.cn
作者简介: 杨延格,男,1985年生,副研究员

引用本文:

杨延格, 曹京宜, 王兴奇, 方志刚, 于宏飞, 于宝兴, 王福会. 轻合金锆/钛基转化膜的设计及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 387-394.
Yange YANG, Jingyi CAO, Xingqi WANG, Zhigang FANG, Hongfei YU, Baoxing YU, Fuhui WANG. Design and Performance of Zr- and/or Ti-based Chemical Conversion Coatings for Light Alloys. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 387-394.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.301      或      https://www.jcscp.org/CN/Y2022/V42/I3/387

AlloyMgMnSiFeCrCuZnTiNiOthersAl
5083 Al-alloy4.330.540.120.340.079<0.01<0.02<0.02---<0.05Bal.
2A12 Al-alloy1.510.610.0850.29---4.510.140.0350.005---Bal.
6061 Al-alloy0.840.060.410.330.120.18---0.03------Bal.
AZ91D Mg-alloyBal.0.19<0.05<0.02------0.67---------8.61
表1  铝合金和镁合金的成分
Non-commercial conversion solutionCommercial conversion solution
Conversion bathSubstrateTrade name (Manufacturer)Main compositionSubstrate
K2ZrF6Al-alloy[22]Henkel AG & Co. KGaAH2ZrF6+CuAl-alloy[39,40]
H2ZrF6Al-alloy[25-30]Bonderite MNT 5200 (Henkel)H2ZrF6+H2TiF6Al-alloy[41]
H2ZrF6+ H2TiF6Al-alloy[31-33]Alodine 4830 (Henkel)H2ZrF6+H2TiF6Al-alloy[42]
K2ZrF6+ K2TiF6Al-alloy[20]Surtec 650 (Surtec International)H2ZrF6+Cr(III)Mg-alloy[43]
K2ZrF6Mg-alloy[34,35]
H2ZrF6Mg-alloy[36,37]
H2ZrF6+H2TiF6Mg-alloy[38]
表2  典型轻合金商用和非商用锆/钛转化液的成分
图1  AA2024铝合金钛基化学转化过程中界面pH和开路电位的变化[44]
图2  磷酸盐复合转化膜成膜不同时间的同步辐射图像[45]
图3  铝合金上高性能锆基转化膜的成膜机理模型[22]
图4  铝合金上高性能锆基转化膜的表面和截面形貌[22]
图5  镁合金上高性能锆/钛基转化膜的表面和截面形貌及盐雾48 h后镁合金基体和锆/钛基转化膜的宏观形貌[24]
图6  2A12铝合金基体和锆基转化膜的动电位极化曲线[23]
图7  铝合金不同表面前处理后锆基转化膜的微观形貌[22]
1 Meng Q J, Frankel G S. Characterization of chromate conversion coating on AA7075-T6 aluminum alloy [J]. Surf. Interface Anal., 2004, 36: 30
2 Zhao J, Xia L, Sehgal A, et al. Effects of chromate and chromate conversion coatings on corrosion of aluminum alloy 2024-T3 [J]. Surf. Coat. Technol., 2001, 140: 51
3 Kulinich S A, Akhtar A S, Susac D, et al. On the growth of conversion chromate coatings on 2024-Al alloy [J]. Appl. Surf. Sci., 2007, 253: 3144
4 Lunder O, Walmsley J C, Mack P, et al. Formation and characterisation of a chromate conversion coating on AA6060 aluminium [J]. Corros. Sci., 2005, 47: 1604
5 Liu Y, Arenas A M, Garcia-Vergara S G, et al. Ageing effects in the growth of chromate conversion coatings on aluminium [J]. Corros. Sci., 2005, 47: 145
6 Xia L, McCreery R L. Structure and function of ferricyanide in the formation of chromate conversion coatings on aluminum aircraft alloy [J]. J. Electrochem. Soc., 1999, 146: 3696
7 Guo Y, Franke G S. Characterization of trivalent chromium process coating on AA2024-T3 [J]. Surf. Coat. Technol., 2012, 206: 3895
8 Li L L, Kim D Y, Swain G M. Transient formation of chromate in trivalent chromium process (TCP) coatings on AA2024 as probed by Raman spectroscopy [J]. J. Electrochem. Soc., 2012, 159: C326
9 Li L L, Swain G M. Effects of aging temperature and time on the corrosion protection provided by trivalent chromium process coatings on AA2024-T3 [J]. ACS Appl. Mater. Interfaces, 2013, 5: 7923
10 Niu L Y, Jiang Z H, Li G Y, et al. A study and application of zinc phosphate coating on AZ91D magnesium alloy [J]. Surf. Coat. Technol., 2006, 200: 3021
11 Kouisni L, Azzi M, Zertoubi M, et al. Phosphate coatings on magnesium alloy AM60 part 1: study of the formation and the growth of zinc phosphate films [J]. Surf. Coat. Technol., 2004, 185: 58
12 Zhou W Q, Shan D Y, Han E-H, et al. Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy [J]. Corros. Sci., 2008, 50: 329
13 De Frutos A, Arenas M A, Liu Y, et al. Influence of pre-treatments in cerium conversion treatment of AA2024-T3 and 7075-T6 alloys [J]. Surf. Coat. Technol., 2008, 202: 3797
14 Campestrini P, Terryn H, Hovestad A, et al. Formation of a cerium-based conversion coating on AA2024: relationship with the microstructure [J]. Surf. Coat. Technol., 2004, 176: 365
15 Bethencourt M, Botana F J, Cano M J, et al. Using EIS to analyse samples of Al-Mg alloy AA5083 treated by thermal activation in cerium salt baths [J]. Corros. Sci., 2008, 50: 1376
16 Palomino L E M, Aoki I V, De Melo H G. Microstructural and electrochemical characterization of Ce conversion layers formed on Al alloy 2024-T3 covered with Cu-rich smut [J]. Electrochim. Acta, 2006, 51: 5943
17 Yang K H, Ger M D, Hwu W H, et al. Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy [J]. Mater. Chem. Phys., 2007, 101: 480
18 Yang Y C, Tsai C Y, Huang Y H, et al. Formation mechanism and properties of titanate conversion coating on AZ31 magnesium alloy [J]. J. Electrochem. Soc., 2012, 159: C226
19 Lunder O, Simensen C, Yu Y, et al. Formation and characterisation of Ti-Zr based conversion layers on AA6060 aluminium [J]. Surf. Coat. Technol., 2004, 184: 278
20 Coloma P S, Izagirre U, Belaustegi Y, et al. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications [J]. Appl. Surf. Sci., 2015, 345: 24
21 Chen X B, Birbilis N, Abbott T B. Review of corrosion-resistant conversion coatings for magnesium and its alloys [J]. Corrosion, 2011, 67: 035005
22 Liu Y. Investigation of preparation and formation mechanism of zirconium-based conversion coating on aluminum alloy [D]. Harbin: Harbin Engineering University, 2017
22 刘洋. 铝合金锆基转化膜的制备及成膜机理的研究 [D]. 哈尔滨: 哈尔滨工程大学, 2017
23 Yu H F, Shao B, Zhang Y, et al. Preparation and properties of Zr-based conversion coating on 2A12 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 101
23 于宏飞, 邵博, 张悦等. 2A12铝合金锆基转化膜的制备及性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 101
24 Li L H. Mechanism of the formation and corrosion resistance of Ti-Zr conversion coatings on AZ91D magnesium alloy [D]. Shenyang: Shenyang Ligong University, 2016
24 李丽华. AZ91D镁合金钛锆转化膜成膜机制及耐蚀性能研究 [D]. 沈阳: 沈阳理工大学, 2016
25 Deck P D, Reichgott D W, Metchem B, et al. Characterization of chromium-free no-rinse prepaint coatings on aluminum and galvanized steel [J]. Met. Finish., 1992, 90: 29
26 Niknahad M, Moradian S, Mirabedini S M. The adhesion properties and corrosion performance of differently pretreated epoxy coatings on an aluminium alloy [J]. Corros. Sci., 2010, 52: 1948
27 George F O, Skeldon P, Thompson G E. Formation of zirconium-based conversion coatings on aluminium and Al-Cu alloys [J]. Corros. Sci., 2012, 65: 231
28 Zhong X, Wu X S, Jia Y Y, et al. Self-repairing vanadium-zirconium composite conversion coating for aluminum alloys [J]. Appl. Surf. Sci., 2013, 280: 489
29 Golru S S, Attar M M, Ramezanzadeh B. Morphological analysis and corrosion performance of zirconium based conversion coating on the aluminum alloy 1050 [J]. J. Ind. Eng. Chem., 2015, 24: 233
30 Golru S S, Attar M M, Ramezanzadeh B. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating [J]. Appl. Surf. Sci., 2015, 345: 360
31 Yi A H, Li W F, Du J, et al. Preparation and properties of chrome-free colored Ti/Zr based conversion coating on aluminum alloy [J]. Appl. Surf. Sci., 2012, 258: 5960
32 Zuo X, Li W F, Mu S L, et al. Investigation of composition and structure for a novel Ti-Zr chemical conversion coating on 6063 aluminum alloy [J]. Prog. Org. Coat., 2015, 87: 61
33 Yi A H, Li W F, Du J, et al. Effects of Mn2+ on the chrome-free colored Ti/Zr-based conversion coating on 6063 aluminum alloy [J]. Surf. Interface Anal., 2015, 47: 863
34 Chen X M, Li G Y, Lian J S, et al. An organic chromium-free conversion coating on AZ91D magnesium alloy [J]. Appl. Surf. Sci., 2008, 255: 2322
35 Chen X M, Li G Y, Lian J S, et al. Study of the formation and growth of tannic acid based conversion coating on AZ91D magnesium alloy [J]. Surf. Coat. Technol., 2009, 204: 736
36 Verdier S, Delalande S, Van Der Laak N, et al. Monochromatized x-ray photoelectron spectroscopy of the AM60 magnesium alloy surface after treatments in fluoride-based Ti and Zr solutions [J]. Surf. Interface Anal., 2005, 37: 509
37 Verdier S, Van Der Laak N, Dalard F, et al. An electrochemical and SEM study of the mechanism of formation, morphology, and composition of titanium or zirconium fluoride-based coatings [J]. Surf. Coat. Technol., 2006, 200: 2955
38 Yi A H, Du J, Wang J, et al. Preparation and characterization of colored Ti/Zr conversion coating on AZ91D magnesium alloy [J]. Surf. Coat. Technol., 2015, 276: 239
39 Cerezo J, Vandendael I, Posner R, et al. Initiation and growth of modified Zr-based conversion coatings on multi-metal surfaces [J]. Surf. Coat. Technol., 2013, 236: 284
40 Cerezo J, Taheri P, Vandendael I, et al. Influence of surface hydroxyls on the formation of Zr-based conversion coatings on AA6014 aluminum alloy [J]. Surf. Coat. Technol., 2014, 254: 277
41 Li L L, Whitman B W, Swain G M. Characterization and performance of a Zr/Ti pretreatment conversion coating on AA2024-T3 [J]. J. Electrochem. Soc., 2015, 162: C279
42 Peng D D, Wu J S, Yan X L, et al. The formation and corrosion behavior of a zirconium-based conversion coating on the aluminum alloy AA6061 [J]. J. Coat. Technol. Res., 2016, 13: 837
43 Brady M P, Joost W J, Warren C D. Insights from a recent meeting: current status and future directions in magnesium corrosion research [J]. Corrosion, 2017, 73: 452
44 Li L L, Desouza A L, Swain G M. In situ pH measurement during the formation of conversion coatings on an aluminum alloy (AA2024) [J]. Analyst, 2013, 138: 4398
45 Zhao M, Li J G, He G P, et al. Nano Al2O3/phosphate composite conversion coating formed on magnesium alloy for enhancing corrosion resistance [J]. J. Electrochem. Soc., 2013, 160: C553
[1] 翁硕, 俞俊, 赵礼辉, 冯金芝, 郑松林. 腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 486-492.
[2] 孙晓光, 王睿, 张志毅, 韩晓辉, 李刚卿. 高速列车动态服役环境腐蚀在线监测技术研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 441-446.
[3] 陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[4] 杨欣宇, 杨云天, 卢小鹏, 张涛, 王福会. 镁合金缓蚀剂研究进展[J]. 中国腐蚀与防护学报, 2022, 42(3): 435-440.
[5] 刘煊煊, 于金山, 高燕, 赵鹏, 王启伟, 杜卓玲, 张俊喜. APTES改性蒙脱土对镁合金表面杂化溶胶-凝胶涂层防护性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 464-470.
[6] 张泽群, 陈质彬, 董其娟, 邬聪, 李宗欣, 王禾祖, 吴飞, 张博威, 吴俊升. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[7] 黄赵鑫, 朱志平, 周攀, 江源康, 贺明鹏, 王正刚. 换流站阀冷系统中丙二醇防冻液的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 471-478.
[8] 代卫丽, 王景行, 罗帅, 杜宁, 刘凡, 胥立栋, 张俊, 宋月红, 刘彦峰. AM60镁合金超疏水表面制备及防腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 301-308.
[9] 王中琪, 许春香, 杨丽景, 田林海, 黄涛, 史义轩, 杨文甫. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[10] 陈振宁, 雍兴跃, 陈晓春. 镁合金微弧氧化膜中微缺陷问题研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 1-8.
[11] 邵银华, 王金龙, 张伟, 张甲, 李玲, 杜汐然, 陈明辉, 朱圣龙, 王福会. 耐热镁合金Mg-14Gd-2.3Zn-Zr的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 73-78.
[12] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[13] 刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[14] 周殿买, 姜磊, 王美婷, 梁洪嘉, 肖云龙, 郑黎, 于宝义. Ce(NO3)2浓度及硅酸盐封孔处理对高铁枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[15] 杨光恒, 周泽华, 张欣, 吴林涛, 梅婉. 磁场作用下不同Mg含量Al-Mg合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.