Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (3): 464-470    DOI: 10.11902/1005.4537.2021.119
  研究报告 本期目录 | 过刊浏览 |
APTES改性蒙脱土对镁合金表面杂化溶胶-凝胶涂层防护性能的影响
刘煊煊1, 于金山2, 高燕1, 赵鹏2, 王启伟1, 杜卓玲1, 张俊喜1()
1.上海电力大学电力材料防护与新材料重点实验室 上海 200090
2.国网天津市电力公司电力科学研究院 天津 300384
Effect of APTES Modified Montmorillonite on Protective Property of Hybrid Sol-gel Coating on Mg-alloy
LIU Xuanxuan1, YU Jinshan2, GAO Yan1, ZHAO Peng2, WANG Qiwei1, DU Zhuoling1, ZHANG Junxi1()
1.Shanghai Key Laboratory of Electric Power Material Protection and New Material, Shanghai University of Electric Power, Shanghai 200090, China
2.Electric Power Research Institute of State Grid Tianjin Electric Power Company, Tianjin 300384, China
全文: PDF(3760 KB)   HTML
摘要: 

针对蒙脱土与有机-无机杂化溶胶-凝胶体系较差的相容性,使用APTES对蒙脱土进行接枝改性,通过在蒙脱土表面引入氨基建立与溶胶-凝胶体系间较强的键合,在镁合金表面制备更加致密、稳定的复合涂层。对蒙脱土的表征结果表明APTES成功接枝到了蒙脱土片层上。结果分析表明,相比于纯溶胶-凝胶涂层,添加AP-MMT的溶胶-凝胶涂层的耐蚀性具有一定程度的提高。进一步对涂层样品浸泡在0.05 mol/L NaCl溶液中不同时间的电化学阻抗谱 (EIS) 分析表明,掺杂前后的溶胶-凝胶涂层具有不同的失效机制,这些都与改性蒙脱土的添加使得涂层具有更加致密的结构有关。

关键词 镁合金有机-无机杂化溶胶-凝胶涂层蒙脱土改性组装    
Abstract

Due to the poor compatibility between montmorillonite and organic-inorganic hybrid sol-gel system, APTES (aminopropyltriethoxysilane) was used to graft-modification of montmorillonite (AP-MMT) . Through the introduction of amino group on the surface of montmorillonite to establish a tough bonding with the sol-gel system, a more compact and stable composite coating was obtained on AZ31B Mg-alloy. The characterization of montmorillonite indicated that APTES were successfully grafted onto the montmorillonite lamellae. Analysis results showed that the corrosion resistance of sol-gel coating with AP-MMT was improved to a certain extent compared with that of pure sol-gel coating. Electrochemical impedance spectroscopy (EIS) analysis of coated samples immersing in 0.05 mol/L NaCl solution for different time showed that the sol-gel coating before and after doping with AP-MMT exhibited different failure mechanism, which were related to the denser structure caused by the addition of modified montmorillonite.

Key wordsMg- alloy    inorganic-organic hybrid sol-gel coating    montmorillonite    modification    assembly
收稿日期: 2021-05-28     
ZTFLH:  TB332  
基金资助:上海市科学技术委员会项目(19DZ2271100)
通讯作者: 张俊喜     E-mail: zhangjunxi@shiep.edu.cn
Corresponding author: ZHANG Junxi     E-mail: zhangjunxi@shiep.edu.cn
作者简介: 刘煊煊,男,1994年生,硕士生

引用本文:

刘煊煊, 于金山, 高燕, 赵鹏, 王启伟, 杜卓玲, 张俊喜. APTES改性蒙脱土对镁合金表面杂化溶胶-凝胶涂层防护性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 464-470.
Xuanxuan LIU, Jinshan YU, Yan GAO, Peng ZHAO, Qiwei WANG, Zhuoling DU, Junxi ZHANG. Effect of APTES Modified Montmorillonite on Protective Property of Hybrid Sol-gel Coating on Mg-alloy. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 464-470.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.119      或      https://www.jcscp.org/CN/Y2022/V42/I3/464

图1  AP-MMT的表面形貌
图2  蒙脱土接枝改性前后XRD和FTIR谱图
图3  不同涂层样品的表面和截面形貌
图4  不同涂层样品的极化曲线
SampleEcorr vs SCE / VIcorr / A·cm-2
Bare-1.49931.75×10-5
PSG-1.4961.03×10-7
APSG-1.4826.77×10-8
表1  不同涂层样品极化曲线拟合结果
图5  PSG与APSG涂层样品随浸泡时间电化学阻抗谱变化
图6  不同样品在不同浸泡阶段的等效电路
SampleTimeQRΩ·cm2QRΩ·cm2QRΩ·cm2χ2
Y / Ω-1·cm-2·μSnnY / Ω-1·cm-2·μSnnY / Ω-1·cm-2·μSnn
Bare15.010.90623878---------15031.013138.798×10-4
PSG1 h4.425×10-40.9143.688×105---------3.1290.79772.966×1052.43×10-3
7 d1.841×10-30.858952002.5870.57333.901×1044.9840.70355.952×1058.07×10-5
15 d2.9210.358719180.21420.929512366.2480.63513.899×1052.2×10-4
APSG1 h3.482×10-40.92391.096×106---------2.3330.83341.022×1061.688×10-3
7 d4.662×10-40.92116.640×104---------4.1190.59816.934×1057.479×10-4
15 d5.484×10-40.91723.313×104---------5.9230.58584.437×1057.72×10-4
表2  不同涂层样品电化学阻抗谱拟合参数
图7  PSG和APSG涂层样品浸泡15 d后形貌
图8  蒙脱土接枝及对溶胶-凝胶涂层作用机理
1 Esmaily M, Svensson J E, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion [J]. Prog. Mater. Sci., 2017, 89: 92
2 Xu T C, Yang Y, Peng X D, et al. Overview of advancement and development trend on magnesium alloy [J]. J. Magnes. Alloy., 2019, 7: 536
3 Xie L Y, Cao X L, Shi G L, et al. Progress of sol-gel coatings on corrosion protection of magnesium alloy [J]. Mater. Prot., 2016, 49(5): 41
3 谢丽云, 曹献龙, 施国霖等. 溶胶-凝胶涂层在镁合金腐蚀防护应用中的研究进展 [J]. 材料保护, 2016, 49(5): 41
4 Xi Y S, Yang X D, Liu G M. Research progress on hybrid materials prepared by the Sol-Gel method [J]. Surf. Technol., 2012, 41(3): 120
4 奚愚生, 杨晓东, 刘光明. 溶胶-凝胶法制备杂化材料的研究进展 [J]. 表面技术, 2012, 41(3): 120
5 Zhang D D, Peng F, Liu X Y. Protection of magnesium alloys: From physical barrier coating to smart self-healing coating [J]. J. Alloy. Compd., 2021, 853: 157010
6 Nezamdoust S, Seifzadeh D, Habibi-Yangjeh A. Nanodiamond incorporated sol-gel coating for corrosion protection of magnesium alloy [J]. Trans. Nonferrous Met. Soc. China, 2020, 30: 1535
7 Ramezanzadeh B, Haeri Z, Ramezanzadeh M. A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance [J]. Chem. Eng. J., 2016, 303: 511
8 Matin E, Attar M M, Ramezanzadeh B. Investigation of corrosion protection properties of an epoxy nanocomposite loaded with polysiloxane surface modified nanosilica particles on the steel substrate[J]. Prog. Org. Coat., 2015, 78: 395
9 Tamilselvi M, Kamaraj P, Arthanareeswari M, et al. Development of nano SiO2 incorporated nano zinc phosphate coatings on mild steel[J]. Appl. Surf. Sci., 2015, 332: 12
10 Ghanbari A, Attar M M. A study on the anticorrosion performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-silica on mild steel substrate [J]. J. Ind. Eng. Chem., 2015, 23: 145
11 Li C Y, Fan X L, Cui L Y, et al. Corrosion resistance and electrical conductivity of a nano ATO-doped MAO/methyltrimethoxysilane composite coating on magnesium alloy AZ31 [J]. Corros. Sci., 2020, 168: 108570
12 Wang X, Shi C J, Li X Y, et al. Preparation and properties of silane functionalized montmorillonite/styrene-ethylene-butadiene-styrene block copolymer nanocomposites [J]. China Synth. Rubber Ind., 2016, 39: 482
12 王霞, 史晨杰, 李晓燕等. 硅烷功能化蒙脱土/苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚物纳米复合材料的制备及性能 [J]. 合成橡胶工业, 2016, 39: 482
13 Mao C Y, Huang Y J, Li G X. Review on the high barrier polymer films enhanced by nanoplatelets [J]. China Plast., 2015, 29(10): 7
13 毛超英, 黄亚江, 李光宪. 聚合物/层状纳米填料阻隔复合薄膜研究进展 [J]. 中国塑料, 2015, 29(10): 7
14 Para M L, Versaci D, Amici J, et al. Synthesis and characterization of montmorillonite/polyaniline composites and its usage to modify a commercial separator [J]. J. Electroanal. Chem., 2021, 880: 114876
15 Luan H, Meng F D, Liu L, et al. Preparation and anticorrosion performance of m-phenylenediamine-graphene oxide/organic coating [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 161
15 栾浩, 孟凡帝, 刘莉等. 间苯二胺-氧化石墨烯/有机涂层的制备及防腐性能研究 [J]. 中国腐蚀与防护学报, 2021, 41: 161
16 Ma Y, Di H H, Yu Z X, et al. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research [J]. Appl. Surf. Sci., 2016, 360: 936
17 Chen T X, Yuan Y, Zhao Y L, et al. Preparation of montmorillonite nanosheets through freezing/thawing and ultrasonic exfoliation [J]. Langmuir, 2019, 35: 2368
18 Praus P, Reli M, Kočí K, et al. Photocatalytic reactions of nanocomposite of ZnS nanoparticles and montmorillonite [J]. Appl. Surf. Sci., 2013, 275: 369
19 Liu C M, Liu S, Wu P X, et al. Enhancing the adsorption behavior and mechanism of Sr (II) by functionalized montmorillonite with different 3-aminopropyltriethoxysilane (APTES) ratios [J]. RSC Adv., 2016, 6: 83288
20 Yin X X, Mu P, Wang Q T, et al. Superhydrophobic ZIF-8-based dual-layer coating for enhanced corrosion protection of Mg alloy [J]. ACS Appl. Mater. Interfaces, 2020, 12: 35453
21 Tian G Y, Zhang M, Zhao Y, et al. High corrosion protection performance of a novel nonfluorinated biomimetic superhydrophobic Zn-Fe coating with Echinopsis multiplex-like structure [J]. ACS Appl. Mater. Interfaces, 2019, 11: 38205
22 Jiang D, Xia X C, Hou J, et al. A novel coating system with self-reparable slippery surface and active corrosion inhibition for reliable protection of Mg alloy [J]. Chem. Eng. J., 2019, 373: 285
23 Jiang D, Xia X C, Hou J, et al. Enhanced corrosion barrier of microarc-oxidized mg alloy by self-healing superhydrophobic silica coating [J]. Ind. Eng. Chem. Res., 2018, 58: 165
24 Wang J, Cui L Y, Ren Y D, et al. In vitro and invivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31 [J]. J. Mater. Sci. Technol., 2020, 47: 52
25 Wang G R, Zheng H P, Cai H Y, et al. Failure process of epoxy coating subjected test of alternating immersion in artificial seawater and dry in air [J]. J. Chin. Soc. Corros. Prot, 2019, 39: 571
25 王贵容, 郑宏鹏, 蔡华洋等. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程 [J]. 中国腐蚀与防护学报, 2019, 39: 571
[1] 杨欣宇, 杨云天, 卢小鹏, 张涛, 王福会. 镁合金缓蚀剂研究进展[J]. 中国腐蚀与防护学报, 2022, 42(3): 435-440.
[2] 张泽群, 陈质彬, 董其娟, 邬聪, 李宗欣, 王禾祖, 吴飞, 张博威, 吴俊升. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[3] 杨延格, 曹京宜, 王兴奇, 方志刚, 于宏飞, 于宝兴, 王福会. 轻合金锆/钛基转化膜的设计及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 387-394.
[4] 梁泰贺, 朱雪梅, 张振卫, 王新建, 张彦生. 铝硅复合对Fe32Mn7Cr3Al2Si钢氧化改性层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[5] 代卫丽, 王景行, 罗帅, 杜宁, 刘凡, 胥立栋, 张俊, 宋月红, 刘彦峰. AM60镁合金超疏水表面制备及防腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 301-308.
[6] 邱盼盼, 舒小勇, 胡林丽, 杨韬, 房雨晴. Pt改性镍基高温合金铝化物涂层研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[7] 苏娜, 叶梦颖, 李建民, 高荣杰. ZIF-8/TiO2纳米复合材料的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42(2): 267-273.
[8] 王中琪, 许春香, 杨丽景, 田林海, 黄涛, 史义轩, 杨文甫. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[9] 李建永, 代殿宇, 钱程, 刁书磊, 刘金山, 路通鑫, 孙勇, 肖凤娟. 不锈钢表面聚苯胺纳米纤维/改性氧化石墨烯/水性环氧复合涂层的制备与防护性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 156-162.
[10] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[11] 陈振宁, 雍兴跃, 陈晓春. 镁合金微弧氧化膜中微缺陷问题研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 1-8.
[12] 邵银华, 王金龙, 张伟, 张甲, 李玲, 杜汐然, 陈明辉, 朱圣龙, 王福会. 耐热镁合金Mg-14Gd-2.3Zn-Zr的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 73-78.
[13] 周殿买, 姜磊, 王美婷, 梁洪嘉, 肖云龙, 郑黎, 于宝义. Ce(NO3)2浓度及硅酸盐封孔处理对高铁枕梁用Mg-Zn-Y-Ca合金表面钙系磷化膜的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[14] 丁玉康, 陈国美, 倪自丰, 刘雅玄, 钱善华, 卞达, 赵永武. 六方氮化硼改性硅烷膜耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[15] 杨光恒, 周泽华, 张欣, 吴林涛, 梅婉. 磁场作用下不同Mg含量Al-Mg合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.