Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (1): 187-196     CSTR: 32134.14.1005.4537.2023.053      DOI: 10.11902/1005.4537.2023.053
  研究报告 本期目录 | 过刊浏览 |
AH36船用钢海水加速腐蚀试验研究
白雪寒, 丁康康, 张彭辉, 范林(), 张慧霞, 刘少通
中国船舶集团有限公司第七二五研究所 海洋腐蚀与防护重点实验室 青岛 266237
Accelerated Corrosion Test of AH36 Ship Hull Steel in Marine Environment
BAI Xuehan, DING Kangkang, ZHANG Penghui, FAN Lin(), ZHANG Huixia, LIU Shaotong
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
引用本文:

白雪寒, 丁康康, 张彭辉, 范林, 张慧霞, 刘少通. AH36船用钢海水加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
Xuehan BAI, Kangkang DING, Penghui ZHANG, Lin FAN, Huixia ZHANG, Shaotong LIU. Accelerated Corrosion Test of AH36 Ship Hull Steel in Marine Environment[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 187-196.

全文: PDF(18310 KB)   HTML
摘要: 

针对海水环境加速腐蚀试验无标准方法可循,现有加速腐蚀试验方法效果不理想的问题,以前期研究为基础,通过增大H2O2溶度和添加稳定剂,对AH36船用钢开展了海水加速腐蚀试验研究,并从腐蚀相关性和加速性上与西沙自然环境腐蚀试验结果进行了对比分析。结果表明,采用0.6 mol/L NaCl + 1.8 mol/L H2O2 + 0.2 mol/L H3PO4-NaH2PO4缓冲溶液(pH = 2.5)为溶液的加速腐蚀试验与西沙自然环境试验具有较好的相关性和加速性。AH36钢发生不均匀的全面腐蚀,并表现出腐蚀速率先增大后减小的电化学和动力学规律。腐蚀产物由Fe的氧化物和羟基氧化物组成,对中长期腐蚀具有较好的抑制作用。Fe3(PO4)2(OH)2难溶盐的生成,增强了锈层的保护性。H2O2通过缩短反应历程和增加溶液溶氧量,促进阴极去极化,加速钢的腐蚀。相对于西沙自然环境试验1 a的暴露试验,加速倍率达到约40倍。本研究为海洋材料海水腐蚀的快速评价探索了途径。

关键词 AH36船用钢海水环境加速腐蚀试验腐蚀产物电化学行为    
Abstract

In view of the fact that there is no common recognized standard in accelerated corrosion test for the simulation of marine environmental corrosion, and the existing accelerated corrosion test method is not well satisfactory. Therefore, on the basis of our previous research, a solution with addition of higher amount of H2O2, while phosphate buffer solution as stabilizer was proposed for the accelerated corrosion test of AH36 ship hull steel. The testing results were compared with those of the natural environment exposure test at Xisha sea area of Hainan province. It follows that there is a good correlation between the accelerated corrosion test in the solution containing 0.6 mol/L NaCl, 1.8 mol/L H2O2 and 0.2 mol/L H3PO4-NaH2PO4 buffer solution (pH = 2.5) and the natural environment exposure test in Xisha sea area; Non-uniform overall corrosion occurs on AH36 steel, The corrosion rate of AH36 steel increases first and then decreases. The corrosion products are composed of iron oxides and hydroxyl oxides, which have a good inhibition effect on medium-and long-term corrosion. The formation of insoluble salt Fe3(PO4)2(OH)2 enhances the protectiveness of the rust scale. H2O2 promotes cathodic depolarization and accelerates the corrosion of steel by shortening the reaction process and increasing the dissolved oxygen in the solution. Compared with the natural environment exposure test in Xisha for 1 a, the accelerated corrosion test results in an accelerated corrosion rate about 40 times of natural marine environment exposured ones. This study explores a way for rapid evaluation of marine environmental corrosion of engineering steels.

Key wordsAH36 ship hull steel    marine environment    accelerated corrosion test    corrosion product    electrochemical behavior
收稿日期: 2023-02-28      32134.14.1005.4537.2023.053
ZTFLH:  TG172  
基金资助:科技部科技基础资源调查专项(2019FY101402);国家自然科学基金(51931008)
通讯作者: 范林,E-mail: fanl@sunrui.net,研究方向为材料腐蚀与防护
Corresponding author: FAN Lin, E-mail: fanl@sunrui.net
作者简介: 白雪寒,女,1995年生,硕士,工程师
图1  AH36钢加速腐蚀试验不同周期的锈层形貌
图2  AH36钢西沙自然环境试验不同周期的锈层形貌
图3  AH36钢加速腐蚀试验不同周期的宏观腐蚀形貌
图4  AH36钢西沙自然环境试验不同周期宏观腐蚀形貌
图5  AH36钢加速腐蚀试验不同周期的微观腐蚀形貌
图6  AH36钢西沙自然环境试验不同周期的微观腐蚀形貌
图7  AH36钢加速腐蚀试验30 d和西沙自然环境试验2 a腐蚀产物XRD谱
图8  AH36钢加速腐蚀试验各周期的极化曲线

Test time

d

Ecorr

V

Icorr

μA·cm 2

ba

mV·dec 1

bc

mV·dec 1

0-0.7020.14611988
1-0.88313.4142106
4-0.92029.7162109
7-0.93378.7166119
10-0.91861.9172123
20-0.82740.9159127
30-0.66014.6163153
表1  AH36钢加速腐蚀试验各周期极化曲线参数
图9  AH36钢加速腐蚀试验各周期的电化学阻抗谱
Test time / dQf/ μS·sec n ·cm-2nfRf/ Ω·cm2Qdl / mS·sec n ·cm-2ndlRct/ Ω·cm2
0196.10.831965139.40.87871.4
1215.30.7775.55444.70.41290.0
2301.50.6663.8761.20.51149.1
4397.30.6379.885.60.7479.6
783850.0968.50.0140.8950.4
10726.50.2270.20.010.91269.9
2047.01.00105.70.6970.24640.6
301.3170.50967.63.530.221204.5
表2  AH36钢加速腐蚀试验各周期电化学阻抗谱拟合参数
图10  AH36钢加速腐蚀试验和西沙自然环境试验腐蚀失重随试验时间的变化
图11  加速倍率与加速腐蚀试验时间的关系
1 Sharma A R, Goyal R. Study of corrosion behaviour of Al2O3-13% TiO2 and Cr2O3 coated ship hull steel in 3.5% NaCl solution [J]. J. Phys.: Conf. Ser., 2021, 1969: 012021
2 Melchers R E. Long-term corrosion of cast irons and steel in marine and atmospheric environments [J]. Corros. Sci., 2013, 68: 186
doi: 10.1016/j.corsci.2012.11.014
3 Qi Y F, Dong C C, Yang W G. Corrosion data of carbon steel, low alloy steel in the marine environment in our country [J]. Total Corros. Contr., 2017, 31(1): 24
3 亓云飞, 董彩常, 杨万国. 碳钢、低合金钢材料在我国海洋环境中的腐蚀数据 [J]. 全面腐蚀控制, 2017, 31(1): 24
4 Zhang P H, Ding K K, Guo W M, et al. Corrosion behaviors of AH36 steel in different seawater zones in Xisha [J]. Equip. Environ. Eng., 2019, 16(4): 59
4 张彭辉, 丁康康, 郭为民 等. AH36钢在西沙海域不同区带腐蚀行为研究 [J]. 装备环境工程, 2019, 16(4): 59
5 Vukelic G, Vizentin G, Brnic J, et al. Long-term marine environment exposure effect on butt-welded shipbuilding steel [J]. J. Mar. Sci. Eng., 2021, 9: 491
6 Fan L, Ding K K, Wang R, et al. Comparison on marine corrosion behavior of 10CrNi3MoV steel in typical harbors of China [J]. Equip. Environ. Eng., 2019, 16(4): 14
6 范 林, 丁康康, 王 锐 等. 10CrNi3MoV船用钢港口环境腐蚀行为对比研究 [J]. 装备环境工程, 2019, 16(4): 14
7 Melchers R E. The effect of corrosion on the structural reliability of steel offshore structures [J]. Corros. Sci., 2005, 47: 2391
doi: 10.1016/j.corsci.2005.04.004
8 Xu D, Yang X J, Li Q, et al. Review on corrosion test methods and evaluation techniques for materials in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 447
8 徐 迪, 杨小佳, 李 清 等. 材料大气环境腐蚀试验方法与评价技术进展 [J]. 中国腐蚀与防护学报, 2022, 42: 447
9 Peng Y W, Zhao J W, Liu Y F, et al. Galvanic corrosion between Al-Zn-Mg-Cu alloy and stainless steel in the salt-spray atmosphere [J]. Mater. Chem. Phys., 2023, 294: 127009
10 Guo H C, Wei H H, Li G Q, et al. Experimental research on fatigue performance of butt welds of corroded Q690 high strength steel [J]. J. Constr. Steel Res., 2021, 184: 106801
doi: 10.1016/j.jcsr.2021.106801
11 Cheng C Q, Klinkenberg L I, Ise Y, et al. Pitting corrosion of sensitised type 304 stainless steel under wet-dry cycling condition [J]. Corros. Sci., 2017, 118: 217
doi: 10.1016/j.corsci.2017.02.010
12 Chen J W, Fu C Q, Ye H L, et al. Corrosion of steel embedded in mortar and concrete under different electrolytic accelerated corrosion methods [J]. Constr. Build. Mater., 2020, 241: 117971
doi: 10.1016/j.conbuildmat.2019.117971
13 Feng L T, Liu Q, Bao X, et al. Investigation on porous oxygen electrode of bronze ware accelerated corrosion [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 184
13 冯丽婷, 刘 清, 包 祥 等. 青铜器加速腐蚀的多孔氧电极研究 [J]. 中国腐蚀与防护学报, 2006, 26: 184
14 Wang X R, Chen Z J, Cai R. An accelerated test method for seawater corrosion of steel—accelerated wheel method [J]. Corros. Prot., 1987, 42(4): 6
14 王相润, 陈振进, 蔡 锐. 钢的一种海水腐蚀加速试验法——加速轮法 [J]. 腐蚀与防护, 1987, 42(4): 6
15 Yu H T, Zheng T S, Zhuang H Y. An inter-immersion corrosion test method for accelerated corrosion of materials in simulated seawater: Chin Pat, 200710304821.4 [P]. 2009
15 于海涛, 郑添水, 庄海燕. 一种天然海水模拟加速材料腐蚀的间浸腐蚀试验方法: 中国专利, 200710304821.4 [P]. 2009
16 Zhang H X, Qi X, Zeng H B, et al. Study on method of accelerated corrosion experiment in simulated seawater [J]. Corro. Sci. Prot. Technol., 2010, 22: 192
16 张慧霞, 戚 霞, 曾华波 等. 海水全浸室内模拟加速试验方法的研究 [J]. 腐蚀科学与防护技术, 2010, 22: 192
17 Zhang H X, Zeng H B, Qiu R. Main influencing factors to accelerate low alloy steel corrosion in seawater by adding H2O2 [J]. Equip. Environ. Eng., 2012, 9(6): 47
17 张慧霞, 曾华波, 邱 日. 添加H2O2加速低合金钢海水腐蚀的主要影响因素研究 [J]. 装备环境工程, 2012, 9(6): 47
18 Shiraishi Y, Ueda Y, Soramoto A, et al. Photocatalytic hydrogen peroxide splitting on metal-free powders assisted by phosphoric acid as a stabilizer [J]. Nat. Commun., 2020, 11: 3386
doi: 10.1038/s41467-020-17216-2 pmid: 32636382
19 Okada H, Hosoi Y, Naito H. Electrochemical reduction of thick rust layers formed on steel surfaces [J]. Corrosion, 1970, 26: 429
doi: 10.5006/0010-9312-26.10.429
20 De La Fuente D, Alcántara J, Chico B, et al. Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/Micro-Raman techniques [J]. Corros. Sci., 2016, 110: 253
doi: 10.1016/j.corsci.2016.04.034
21 Su H Y, Liang Y, Wei S C, et al. Couple effect of hydrostatic pressure and dissolved oxygen on corrosion behaviour of low-alloy high strength steel in 3.5 wt-% NaCl solution [J]. Corros. Eng. Sci. Technol., 2019, 54: 330
doi: 10.1080/1478422X.2019.1590959
22 Wu W, Cheng X Q, Zhao J B, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives [J]. Corros. Sci., 2020, 165: 108416
doi: 10.1016/j.corsci.2019.108416
23 Ohtsuka T, Komatsu T. Enhancement of electric conductivity of the rust layer by adsorption of water [J]. Corros. Sci., 2005, 47: 2571
doi: 10.1016/j.corsci.2004.10.010
24 Yang J H, Liu Q Y, Wang X D, et al. The progress of investigation on weathering steel and its rust layer [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 367
24 杨景红, 刘清友, 王向东 等. 耐候钢及其腐蚀产物的研究概况 [J]. 中国腐蚀与防护学报, 2007, 27: 367
25 Dillmann P, Mazaudier F, Hœrlé S. Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion [J]. Corros. Sci., 2004, 46: 1401
doi: 10.1016/j.corsci.2003.09.027
26 Li H, Liu Y H, Zhao L H, et al. Corrosion behavior of 300M ultra high strength steel in simulated marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 87
26 李 晗, 刘元海, 赵连红 等. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 87
27 Wroblowa H S, Qaderi S B. Mechanism and kinetics of oxygen reduction on steel [J]. J. Electroanal. Chem. Interfacial Electrochem., 1990, 279: 231
doi: 10.1016/0022-0728(90)85179-9
28 Martinez A L, Saugo M, Flamini D O, et al. Enhancing the corrosion behavior of Ti-6Al-4V and Nitinol alloys by simple chemical oxidation in H2O2 [J]. Mater. Chem. Phys., 2023, 295: 127069
doi: 10.1016/j.matchemphys.2022.127069
29 Zhang Y, Zhang X, Chen S Y, et al. Effect of phosphoric acid concentration on corrosion resistance and passivation film properties of 316L stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 819
29 张 媛, 张 弦, 陈思雨 等. 磷酸浓度对316L不锈钢耐蚀性及钝化膜特性的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 819
30 Ishikawa T, Takeuchi K, Kandori K, et al. Transformation of γ-FeOOH to α-FeOOH in acidic solutions containing metal ions [J]. Colloids Surf., 2005, 266A: 155
31 Zhang P H, Li X C, Tong H T, et al. Corrosion behavior of 10CrNi3MoV steel in deep-sea environment of western pacific [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1075
31 张彭辉, 李显超, 仝宏涛 等. 10CrNi3MoV钢在西太平洋深海环境下的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1075
doi: 10.11902/1005.4537.2021.328
32 Xia R L, Jia C, Liu C Y, et al. Non-uniform corrosion characteristics of the steel pipe pile exposed to marine environments [J]. Ocean Eng., 2023, 272: 113873
doi: 10.1016/j.oceaneng.2023.113873
33 Zhou L J, Yang S W. Investigation on crack propagation in band-like rust layers on weathering steel [J]. Constr. Build. Mater., 2021, 281: 122564
doi: 10.1016/j.conbuildmat.2021.122564
34 Wan Y, Tan J, Zhu S T, et al. Insight into atmospheric pitting corrosion of carbon steel via a dual-beam FIB/SEM system associated with high-resolution TEM [J]. Corros. Sci., 2019, 152: 226
doi: 10.1016/j.corsci.2019.03.017
35 Luo X P, Zhang W L, Chen F, et al. Research on local corrosion behavior of high manganese austenitic steel [J]. Dev. Appl. Mater., 2022, 37(6): 83
35 罗先甫, 张文利, 陈飞 等. 低温高锰钢的局部腐蚀行为研究[J]. 材料开发与应用, 2022, 37(6): 83
36 Ding K K, Liu Y Q, Gu L H, et al. Corrosion behavior of E420 in seawater environments of the reef in the South China Sea [J]. Equip. Environ. Eng., 2020, 17(10): 1
36 丁康康, 刘亚强, 顾良华 等. E420在南海岛礁海水环境腐蚀行为规律研究 [J]. 装备环境工程, 2020, 17(10): 1
37 Papadopoulos M P, Apostolopoulos C A, Zervaki A D, et al. Corrosion of exposed rebars, associated mechanical degradation and correlation with accelerated corrosion tests [J]. Constr. Build. Mater., 2011, 25: 3367
doi: 10.1016/j.conbuildmat.2011.03.027
[1] 冷文俊, 石西召, 辛永磊, 杨延格, 王利, 崔中雨, 侯健. 极地低温海洋大气环境下Ni-Cr-Mo-V钢腐蚀行为与室内外相关性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
[2] 何逸, 郑传波, 戚浩宇, 刘珍光. TP2紫铜在工业环境中腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 71-81.
[3] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[4] 邓成满, 刘喆, 夏大海, 胡文彬. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 683-692.
[5] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[6] 周志平, 吴大康, 张宏福, 张磊, 李明星, 张志鑫, 钟显康. 高温下L80钢的断裂机理及CO2/H2S模拟工况下的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[7] 王莎莎, 马帅杰, 车琨, 杜艳霞. 机器学习在自然环境腐蚀评估与预测领域的应用现状[J]. 中国腐蚀与防护学报, 2023, 43(3): 441-451.
[8] 幸雪松, 范白涛, 朱新宇, 张俊莹, 陈长风. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[9] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[10] 李晗, 刘元海, 赵连红, 崔中雨. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[11] 王小红, 李子硕, 唐御峰, 谭浩, 蒋焰罡. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1043-1050.
[12] 王腾宇, 张正贵, 陆卫中, 吴希革. 交变压力对无溶剂环氧涂层在模拟超深海环境下的电化学行为[J]. 中国腐蚀与防护学报, 2022, 42(6): 929-938.
[13] 薛芳, 刘两雨, 谭龙. Q235钢在不同浓度碳酸氢钠溶液中的有氧腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.
[14] 王通, 孟惠民, 葛鹏飞, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 2Cr-1Ni-1.2Mo-0.2V钢在NH4H2PO4溶液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[15] 徐迪, 杨小佳, 李清, 程学群, 李晓刚. 材料大气环境腐蚀试验方法与评价技术进展[J]. 中国腐蚀与防护学报, 2022, 42(3): 447-457.