Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 435-440     CSTR: 32134.14.1005.4537.2022.098      DOI: 10.11902/1005.4537.2022.098
  研究报告 本期目录 | 过刊浏览 |
铜在电网接地工况下的腐蚀行为研究
高义斌1, 杜晓刚1, 王启伟2(), 钟黎明1, 付文华1, 张邯平1, 张甍1, 姜春海2
1.国网山西省电力公司电力科学研究院 太原 030001
2.厦门理工学院材料科学与工程学院 厦门 361024
Corrosion Behavior of Copper in a Simulated Grounding Condition in Electric Power Grid
GAO Yibin1, DU Xiaogang1, WANG Qiwei2(), ZHONG Liming1, FU Wenhua1, ZHANG Hanping1, ZHANG Meng1, JIANG Chunhai2
1.State Grid Shanxi Electric Power Research Institute, Taiyuan 030001, China
2.School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
全文: PDF(4654 KB)   HTML
摘要: 

通过室内模拟加速实验、电化学测试以及X射线衍射 (XRD)、扫描电子显微镜 (SEM) 等手段对通电工况下铜接地网材料在酸性土壤环境中的腐蚀特征进行了研究。结果表明,通电条件对Cu的腐蚀行为有较大影响,Cu的腐蚀速率随外加电流密度的增大而逐渐增大;腐蚀产物以CuO和Cu2O为主,Cu2O的占比随外加电流密度的增大而减小。

关键词 接地工况纯铜土壤腐蚀交流电电网    
Abstract

The corrosion behavior of copper was studied by means of an indoor simulation accelerated test method, aiming to simulate the situation that copper earthed in acidic soil in power grid with alternating current (AC) interference, as well as electrochemical measurement, X-ray diffractometer (XRD) and scanning electron microscope (SEM). The results demonstrate that the interference current AC has a great influence on the corrosion of copper. The corrosion rate of copper is positively related to AC density. The main corrosion products are CuO and Cu2O, while the proportion of Cu2O was declined with the increasing AC density.

Key wordsgrounding condition    copper    soil corrosion    alternating current    electric power grid
收稿日期: 2022-04-08      32134.14.1005.4537.2022.098
ZTFLH:  TG172  
作者简介: 高义斌,男,1979年生,教授级高级工程师

引用本文:

高义斌, 杜晓刚, 王启伟, 钟黎明, 付文华, 张邯平, 张甍, 姜春海. 铜在电网接地工况下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 435-440.
Yibin GAO, Xiaogang DU, Qiwei WANG, Liming ZHONG, Wenhua FU, Hanping ZHANG, Meng ZHANG, Chunhai JIANG. Corrosion Behavior of Copper in a Simulated Grounding Condition in Electric Power Grid. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 435-440.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.098      或      https://www.jcscp.org/CN/Y2023/V43/I2/435

图1  Cu的腐蚀速率随外加电流密度变化
图2  Cu在通过不同电流密度下的腐蚀产物XRD谱
图3  Cu在通过不同电流密度下的Cu2O/CuO峰比
图4  Cu在通过不同电流密度下的腐蚀产物SEM图
图5  Cu在酸性土壤模拟液中通过不同电流密度的动电位极化曲线
I / A·m-2Ecorr vs SCE / mVIcorr / A·cm-2
0-62.5614.755×10-6
10-59.3455.773×10-6
30-54.5055.816×10-6
50-49.7131.292×10-5
100-45.2082.800×10-5
表1  Cu电极在酸性土壤模拟液中通过不同电流密度的动电位极化曲线拟合结果
[1] Zhou M. Research on the acid-soil anticorrosive grounding device of transformer substations [J]. Electr. Power Surv. Des., 2018, (suppl.2): 118
[1] (周明. 变电站全寿命耐腐蚀接地装置的研究 [J]. 电力勘测设计, 2018, (增刊2): 118)
[2] Fu L J, Liu W W, Guan Y L, et al. Study on the corrosion of grounding grid in substation [J]. Heilongjiang Electr. Power, 2016, 38: 516
[2] (付丽君, 刘伟伟, 关艳玲 等. 土壤对变电站接地网腐蚀的研究 [J]. 黑龙江电力, 2016, 38: 516)
[3] Yu Y F, Zhan Y Z, Lin Z W, et al. Research on 220 kV substation ground grid corrosion status in Hubei power grid [J]. Hubei Electr. Power, 2007, 31(4): 5
[3] (喻亚非, 詹约章, 林志伟 等. 湖北电网220kV变电站接地网腐蚀状况研究 [J]. 湖北电力, 2007, 31(4): 5)
[4] Nie X H, Li X G, Li Y L, et al. Simulative and accelerative experimentation of carbon steel corrosion in soil [J]. J. Mater. Eng., 2012, 40(1): 59
[4] (聂向晖, 李晓刚, 李云龙 等. 碳钢的土壤腐蚀模拟加速实验 [J]. 材料工程, 2012, 40(1): 59)
[5] Fu J, Zhu Z P, Pei F, et al. Influence of chloride ion in sandy soil on corrosion behavior of ground grid 20 steel [J]. Mater. Prot., 2013, 46(9): 57
[5] (付晶, 朱志平, 裴锋 等. 砂质土壤中的Cl-含量对接地网材20钢腐蚀行为的影响 [J]. 材料保护, 2013, 46(9): 57)
[6] Ma G, Han Y, Nie J K, et al. Investigation on corrosion property of grounding copper-clad steel in electrical engineering [J]. East China Electr. Power, 2010, 38: 1736
[6] (马光, 韩钰, 聂京凯 等. 电气工程接地用铜覆钢腐蚀性能研究 [J]. 华东电力, 2010, 38: 1736)
[7] Afonso F S, Neto M M M, Mendonça M H, et al. Copper corrosion in soil: influence of chloride contents, aeration and humidity [J]. J. Solid State Electrochem., 2009, 13: 1757
doi: 10.1007/s10008-009-0868-4
[8] Shao Y P, Mu M M, Zhang B, et al. Corrosion behavior of copper-clad steel bars with unclad two-end faces for grounding grids in the red clay soil [J]. J. Mater. Eng. Perform., 2017, 26: 1751
doi: 10.1007/s11665-017-2581-2
[9] Chen X, Du C W, Li X G, et al. Influences of soil water content on corrosion behavior of X70 steel in Yingtan acidic soil [J]. J. Petrochem. Univ., 2007, 20(4): 55
[9] (陈旭, 杜翠薇, 李晓刚 等. 含水率对X70钢在鹰潭酸性土壤中腐蚀行为的影响 [J]. 石油化工高等学校学报, 2007, 20(4): 55)
[10] Liu S, Sun H Y, Sun L J. Effects of pH values and temperature on the electrochemical corrosion behavior of galvanized steel in simulated rust layer solution [J]. J. Funct. Mater., 2013, 44: 858
[10] (刘栓, 孙虎元, 孙立娟. pH值和温度对镀锌钢在模拟锈层溶液中电化学腐蚀行为的影响 [J]. 功能材料, 2013, 44: 858)
[11] Song Q W, Liu Y, Chen X L, et al. Effect of pH value on the soil corrosion behaviors of X80 pipeline steel [J]. Total Corros. Control, 2008, 22(4): 63
[11] (宋庆伟, 刘云, 陈秀玲 等. pH值对X80管线钢土壤腐蚀行为的影响 [J]. 全面腐蚀控制, 2008, 22(4): 63)
[12] Lu X. Corrosion behavior and mechanism of copper at Nansha Islands marine atmospheric environment [D]. Hefei: University of Science and Technology of China, 2021
[12] (路肖. 在南沙海洋大气环境中的腐蚀行为与机理研究 [D]. 合肥: 中国科学技术大学, 2021)
[13] Huang H L, Pan Z Q, Guo X P, et al. Effect of an alternating electric field on the atmospheric corrosion behaviour of copper under a thin electrolyte layer [J]. Corros. Sci., 2013, 75: 100
doi: 10.1016/j.corsci.2013.05.019
[14] Tran T T M, Fiaud C, Sutter E M M, et al. The atmospheric corrosion of copper by hydrogen sulphide in underground conditions [J]. Corros. Sci., 2003, 45: 2787
doi: 10.1016/S0010-938X(03)00112-4
[15] Yan F J, Li X G, Jiang B, et al. Corrosion behavior of pure copper in alkaline soil [J]. Corros. Sci. Prot. Technol., 2019, 31: 155
[15] (闫风洁, 李辛庚, 姜波 等. 纯铜在碱性土壤中的腐蚀行为 [J]. 腐蚀科学与防护技术, 2019, 31: 155)
[16] Zhang Y T, Fang B L, Ding D, et al. Effects of soil water content and DC current density on initial corrosion behavior of Cu in Baoji soil [J]. Surf. Technol., 2018, 47(6): 131
[16] (张燕涛, 房本岭, 丁德 等. 含水量与直流干扰电流密度对紫铜在宝鸡土壤中初期腐蚀行为的影响 [J]. 表面技术, 2018, 47(6): 131)
[17] Wu Y H, Luo S X, Gou H. The corrosion behavior of copper in acid soil during soil acidification by simulated acid rain [J]. Materialwiss. Werkstofftech., 2012, 43: 1074
doi: 10.1002/mawe.201200927
[18] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, StandardizationAdministration. Corrosion of metals and alloys—Removal of corrosion products from corrosion test specimens [S]. Beijing: Standards Press of China, 2016
[18] (中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属和合金的腐蚀 腐蚀试样上腐蚀产物的清除 [S]. 北京: 中国标准出版社, 2016)
[19] Zhu M, Du C W, Li X G, et al. Corrosion behavior of pure copper and copper-clad steels in soil at dagang district [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 496
[19] (朱敏, 杜翠薇, 李晓刚 等. 纯Cu和铜包钢在大港土壤环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2013, 33: 496)
[20] Shoaib S, Srinophakun T R, Palsson N S. Influence of soil conditions on corrosion behavior of buried coated and uncoated carbon steels [A]. IEEE International Conference on Innovative Research and Development [C]. Bangkok, 2018: 1
[21] Yu X Y, Wang Z H, Lu Z H. Atmospheric corrosion behavior of copper under static magnetic field environment [J]. Mater. Lett., 2020, 266: 127472
doi: 10.1016/j.matlet.2020.127472
[22] Alfantazi A M, Ahmed T M, Tromans D. Corrosion behavior of copper alloys in chloride media [J]. Mater. Des., 2009, 30: 2425
doi: 10.1016/j.matdes.2008.10.015
[23] Chen S Q, Zhang D. Study of corrosion behavior of copper in 3.5wt.%NaCl solution containing extracellular polymeric substan-ces of an aerotolerant sulphate-reducing bacteria [J]. Corros. Sci., 2018, 136: 275
doi: 10.1016/j.corsci.2018.03.017
[24] FitzGerald K P, Nairn J, Skennerton G, et al. Atmospheric corrosion of copper and the colour, structure and composition of natural patinas on copper [J]. Corros. Sci., 2006, 48: 2480
doi: 10.1016/j.corsci.2005.09.011
[25] Zhao W J, Babu R P, Chang T R, et al. Initial atmospheric corrosion studies of copper from macroscale to nanoscale in a simulated indoor atmospheric environment [J]. Corros. Sci., 2022, 195: 109995
doi: 10.1016/j.corsci.2021.109995
[26] Zha F L, Feng B, He T X. Corrosion behavior of copper grounding materials buried in soil at different depths [J]. Mater. Prot., 2015, 48(3): 48
[26] (查方林, 冯兵, 何铁祥. 不同埋地深度下铜质接地网材料的腐蚀特性 [J]. 材料保护, 2015, 48(3): 48)
[27] Chen K F. Chemical reaction controlled synthesis of copper compounds and their materials performances [D]. Dalian: Dalian University of Technology, 2014
[27] (陈昆峰. 铜化合物的化学反应控制合成与材料性能研究 [D]. 大连: 大连理工大学, 2014)
[28] Chen K F, Si Y F, Xue D F. Directing the branching growth of cuprous oxide by OH- ions [J]. Mod. Phys. Lett., 2009, 23B: 3753
[29] Yin M, Wu C K, Lou Y B, et al. Copper oxide nanocrystals [J]. J. Am. Chem. Soc., 2005, 127: 9506
pmid: 15984877
[30] Tan Y T, Liu X X, Ma L R, et al. The effect of hematite on the corrosion behavior of copper in saturated red soil solutions [J]. J. Mater. Eng. Perform., 2020, 29: 2324
doi: 10.1007/s11665-020-04741-w
[31] Goidanich S, Lazzari L, Ormellese M, et al. Influence of AC on corrosion kinetics for carbon steel, zinc and copper [R]. Houston: NACE International, 2005
[32] Wang Q W, Zhang J X, Gao Y, et al. Galvanic effect and alternating current corrosion of steel in acidic red soil [J]. Metals, 2022, 12: 296
doi: 10.3390/met12020296
[1] 李乐民, 张洁, 卞亚飞, 缪春辉, 陈国宏, 汤文明. 安徽省内电网设备常用Q235和40Cr钢大气腐蚀特性及其规律[J]. 中国腐蚀与防护学报, 2023, 43(3): 535-543.
[2] 夏晓健, 万芯瑗, 高燕, 王启伟, 严康骅, 陈云翔, 洪毅成, 张俊喜. 1050铝合金在通电工况下大气腐蚀的腐蚀特征[J]. 中国腐蚀与防护学报, 2022, 42(6): 1065-1069.
[3] 丁聪, 张金玲, 于彦冲, 李烨磊, 王社斌. A572Gr.65钢在不同土壤模拟液中的腐蚀动力学[J]. 中国腐蚀与防护学报, 2022, 42(1): 149-155.
[4] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[5] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[6] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[7] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[8] 朱亦晨,刘光明,刘欣,裴锋,田旭,师超. 红壤地区接地材料现场埋样与加速腐蚀实验的相关性研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 550-556.
[9] 于利宝, 闫茂成, 王彬彬, 舒韵, 许进, 孙成. 酸性土壤环境中Q235钢的微生物腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 10-17.
[10] 黄涛,陈小平,王向东,米丰毅,刘芮,李向阳. pH值对Q235钢在模拟土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 31-38.
[11] 么惠平, 闫茂成, 杨旭, 孙成. X80管线钢红壤腐蚀初期电化学行为[J]. 中国腐蚀与防护学报, 2014, 34(5): 472-476.
[12] 朱敏, 杜翠薇, 李晓刚, 刘智勇, 王丽叶. 交流电频率对X80管线钢在酸性土壤模拟溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(3): 225-230.
[13] 翁永基,王宁. 碳钢交流电腐蚀机理的探讨[J]. 中国腐蚀与防护学报, 2011, 31(4): 270-274.
[14] 聂向晖, 李晓刚,李云龙,李记科, 张鸿博. 土壤腐蚀加速试验的加速比与动力学相关性研究[J]. 中国腐蚀与防护学报, 2011, 31(3): 208-213.
[15] 黄家怿 邱于兵 郭兴蓬. 采用聚类分析研究X70钢在库尔勒土壤中初期电化学噪声特征[J]. 中国腐蚀与防护学报, 2009, 29(6): 453-458.