Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (3): 225-230    DOI: 10.11902/1005.4537.2013.127
  本期目录 | 过刊浏览 |
交流电频率对X80管线钢在酸性土壤模拟溶液中腐蚀行为的影响
朱敏, 杜翠薇(), 李晓刚, 刘智勇, 王丽叶
北京科技大学材料科学与工程学院 北京 100083
Effects of Alternating Current (AC) Frequency on Corrosion Behavior of X80 Pipeline Steel in a Simulated Acid Soil Solution
ZHU Min, DU Cuiwei(), LI Xiaogang, LIU Zhiyong, WANG Liye
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(5817 KB)   HTML
摘要: 

通过电化学测试、浸泡实验和表面分析技术研究了交流电频率 (50~400 Hz) 对X80钢在鹰潭酸性土壤模拟溶液中腐蚀行为的影响。结果表明,随交流电频率的增加,X80钢的腐蚀速率逐渐减小,腐蚀程度减弱。交流电作用下X80钢生成的腐蚀产物疏松、裂纹多,对基体的保护性很差。X80钢的腐蚀电位偏移量随交流电频率的增大而减小。随交流电频率的增大,阴、阳极极化曲线的振荡幅度逐渐减弱。交流电的施加不仅使阴、阳极的电流密度增大,还使阴极反应由混合控制逐渐向活化控制转变。

关键词 X80钢交流电频率腐蚀行为腐蚀速率    
Abstract

The effect of frequency of the applied alternating current (AC) on corrosion behavior of X80 steel in an artificial liquid aiming to simulate the acid soil medium of Yingtan area was studied by means of electrochemical measurement, immersion test and surface characterization technique. The results showed that with the increasing AC frequency, the corrosion rate and the corrosion degree of X80 steel decreased gradually. The corrosion product of X80 steel under the applied AC was loose with many cracks thus could not offer proper protection to the substrate. The offset of corrosion potential of X80 steel decreased as the AC frequency increases. With the increase of AC frequency, the oscillation amplitude of anode and cathode polarization curve gradually receded. In the range of the test frequency, the applied AC to X80 steel not only induced the increase of the current density for both anode and cathode, but also the change of cathode reaction from mixing control to activation control.

Key wordsX80 steel    AC frequency    corrosion behavior    corrosion rate
收稿日期: 2013-07-11     
ZTFLH:  TG171  
基金资助:国家自然科学基金重点项目(51131001);国家自然科学基金项目(51371036) 资助
作者简介: null

朱敏,男,1985年生,博士生,研究方向为材料的腐蚀与防护

引用本文:

朱敏, 杜翠薇, 李晓刚, 刘智勇, 王丽叶. 交流电频率对X80管线钢在酸性土壤模拟溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(3): 225-230.
Min ZHU, Cuiwei DU, Xiaogang LI, Zhiyong LIU, Liye WANG. Effects of Alternating Current (AC) Frequency on Corrosion Behavior of X80 Pipeline Steel in a Simulated Acid Soil Solution. Journal of Chinese Society for Corrosion and protection, 2014, 34(3): 225-230.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.127      或      https://www.jcscp.org/CN/Y2014/V34/I3/225

图1  
图2  
图3  
图4  
图5  
图6  
图7  
图8  
[1] Wakelin R G, Sheldon C. Investigation and mitigation of AC corrosion on a 300 mm diameter natural gas pipeline [A]. Corrosion/2004[C]. Houston: NACE, 2004
[2] Dong L, Lu M X, Du Y X, et al. Investigation progress of alternating current corrosion on buried pipelines[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 173-178
[2] (董亮, 路民旭, 杜艳霞等. 埋地管道交流腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2011, 31: 173-178)
[3] Roger F. Testing and mitigation of AC corrosion on 8 lines: a field study [A]. Corrosion/2004 [C]. Houston: NACE, 2004
[4] Goidanich S, Lazzari L, Ormellese M. AC Corrosion-Part 2:parameters influencing corrosion rate[J]. Corros. Sci., 2010, 52: 916-922
[5] Fu A Q, Cheng Y F. Effects of alternating current on corrosion of a coated pipeline steel in a chloride-containing carbonate/bicarbonate solution[J]. Corros. Sci., 2010, 52: 612-619
[6] Funk D, Prinz W, Schoneich H G. Investigations of AC corrosion in cathodically protected pipes[J]. 3R Int., 1992, 31: 336-341
[7] Chin D T, Fu T W. Corrosion by alternating current: A study of the anodic polarization of mild steel in Na2SO4 solution[J]. Corrosion, 1979, 35: 514-523
[8] Chin D T, Sachdev P. Corrosion by alternating current: polarization of mild steel in neutral electrolytes[J]. J. Electrochem. Soc., 1983, 130: 1714-1718
[9] Kulman F E. Effects of alternating currents in causing corrosion[J]. Corrosion, 1961, 17: 34-35
[10] Goidanich S, Lazzari L, Ormellese M, et al. Influence of AC on corrosion kinetics for carbon steel, zinc and cop-per [A]. Corrosion/2005 [C]. Houston, Texas: NACE, 2005
[11] Jones D A. Effect of alternating current on corrosion of low alloy and carbon steels[J]. Corrosion, 1978, 34: 428-433
[12] Nielsen L V, Galsgaard F. Sensor technology for on-line monitoring of AC-induced corrosion along pipelines [A]. Corrosion/2005 [C]. Houston, Texas: NACE, 2005
[13] GB/T 16545-1996. Removal of corrosion products from corrosion test specimens of metals and alloysB/T 16545-1996. Removal of corrosion products from corrosion test specimens of metals and alloys[S]
[13] (GB/T 16545-1996. 金属和合金的腐蚀试样上腐蚀产物的清除B/T 16545-1996. 金属和合金的腐蚀试样上腐蚀产物的清除[S])
[14] Fernandes S Z, Mehendale S G, Venkatachalam S. Influence of frequency of alternating current on the electrochemical dissolution of mild steel and nickel[J]. J. Appl. Electrochem., 1980, 10: 649-654
[15] Cao C N. Principles of Electrochemistry of Corrosion[M]. Beijing: Chemistry Industry Press, 2004
[15] (曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2004)
[16] Yang Y, Li Z L, Wen C. Effects of alternating current on X70 steel morphology and electrochemical behavior[J]. Acta Metall. Sin., 2013, 49(1): 43-50
[16] (杨燕, 李自力, 文闯. 交流电对X70钢表面形态及电化学行为的影响[J]. 金属学报, 2013, 49(1): 43-50)
[17] Zhang R, Vairavanathan P R, Lalvani S B. Perturbation method analysis of AC-induced corrosion[J]. Corros. Sci., 2008, 50(6):1664-1671
[1] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[2] 葛鹏莉, 曾文广, 肖雯雯, 高多龙, 张江江, 李芳. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 271-276.
[3] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[4] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[5] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[7] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[8] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[9] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[10] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[11] 赵国仙,黄静,薛艳. 某油田地面集输管道用材腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[12] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[13] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[14] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[15] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.