Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (2): 428-434     CSTR: 32134.14.1005.4537.2022.084      DOI: 10.11902/1005.4537.2022.084
  研究报告 本期目录 | 过刊浏览 |
挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究
张全福1, 宋蕾1, 王建1, 郭振宇2, 任乃栋1, 赵建琪1, 武维康1, 程伟丽2()
1.孝义市东义镁业有限公司 孝义 032308
2.太原理工大学材料科学与工程学院 太原 030024
Mechanical Properties and Corrosion Behavior of an Extruded Dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca
ZHANG Quanfu1, SONG Lei1, WANG Jian1, GUO Zhenyu2, REN Naidong1, ZHAO Jianqi1, WU Weikang1, CHENG Weili2()
1.Xiaoyi Dongyi Magnesium Industry Co, Ltd., Xiaoyi 032308, China
2.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
全文: PDF(7436 KB)   HTML
摘要: 

探究了复合添加微量Sn与Ca对挤压态Mg-0.5Bi基合金的微观组织、力学性能及腐蚀行为的影响。结果表明:挤压态Mg-0.5Bi-0.5Sn-0.5Ca (质量分数,%) 合金主要由α-Mg、Mg2Bi2Ca以及Mg2Sn相组成,合金表现出晶粒尺寸均匀分布的完全动态再结晶组织。合金的抗拉强度 (UTS) 为191 MPa,伸长率 (EL) 高达31.5%,腐蚀速率 (Pi) 为0.51 mm/a,极化阻抗 (Rp) 为707.19 Ω·cm2。此外,挤压态合金在腐蚀过程中生成了含Ca以及含Sn的腐蚀产物中间层,从而提升了腐蚀产物层的保护作用,导致析氢速率随着浸泡时间的增加先增大后减小。最后由于腐蚀产物膜的破裂,析氢速率达到了2.43 mL/d。

关键词 Mg-Bi基合金微观组织力学性能强化机制腐蚀行为    
Abstract

Due to its rapid corrosion rate, the mechanical support function of Mg-alloy implants will be lost in a short time after implantation. Mg-Bi based alloys have attracted much attention in biomedical field because of their non-toxic, excellent biocompatibility and corrosion-resistance. However, the low strength restricts the wide application of Mg-Bi binary alloy. Therefore, the effect of Sn and Ca addition on the microstructure, mechanical properties and corrosion behavior of extruded Mg-0.5Bi-based alloy was investigated in the present article. The results indicated that the extruded Mg-0.5Bi-0.5Sn-0.5Ca (mass fraction,%) alloy consists mainly of phases α-Mg, Mg2Bi2Ca and Mg2Sn, and the alloy presents a fully recrystallized microstructure and uniform grain size distribution. The alloy possesses ultimate tensile strength (UTS) of 191 MPa with elongation at break (EL) of 31.5%. In addition, its corrosion rate (Pi) is 0.51 mm/a and polarization resistance (Rp) is 707.19 Ω·cm2. The hydrogen evolution rate initially increased and then decreased with increasing immersion time due to the formation of Sn and Ca-containing products. Finally, the hydrogen evolution rate reached 2.43 mL/d, which is related to the broken of corrosion product film.

Key wordsMg-Bi based alloy    microstructure    mechanical property    strengthening mechanism    corrosion behavior
收稿日期: 2022-03-24      32134.14.1005.4537.2022.084
ZTFLH:  TG146  
基金资助:山西省留学回国人员资助项目(2019032);山西省镁合金重大科技专项(20191102008)
作者简介: 张全福,男,1972年生,总工程师

引用本文:

张全福, 宋蕾, 王建, 郭振宇, 任乃栋, 赵建琪, 武维康, 程伟丽. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
Quanfu ZHANG, Lei SONG, Jian WANG, Zhenyu GUO, Naidong REN, Jianqi ZHAO, Weikang WU, Weili CHENG. Mechanical Properties and Corrosion Behavior of an Extruded Dilute Mg-alloy Mg-0.5Bi-0.5Sn-0.5Ca. Journal of Chinese Society for Corrosion and protection, 2023, 43(2): 428-434.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.084      或      https://www.jcscp.org/CN/Y2023/V43/I2/428

图1  挤压态Mg0.5Bi-0.5Sn-0.5Ca合金微观组织和晶粒尺寸分布图
图2  挤压态Mg-0.5Bi-0.5Sn-0.5Ca合金的X射线衍射图、第二相分布图和宏观极图
图3  挤压态Mg-0.5Bi-0.5Sn-0.5Ca合金的工程应力-应变曲线、加工硬化曲线和拉伸试样的断口形貌
图4  挤压态Mg-0.5Bi-0.5Sn-0.5Ca合金在模拟体液中的析氢图及对应的腐蚀速率
图5  挤压态Mg-0.5Bi-0.5Sn-0.5Ca合金在模拟体液中的极化曲线和Nyquist图及对应的等效电路图
图6  挤压态Mg-0.5Bi-0.5Sn-0.5Ca合金在模拟体液中浸泡240 h后腐蚀产物成分的XPS分析
SampleEcorr / VIcorr / mA·cm-2Pi / mm·a-1
Mg-0.5Bi-0.5Sn[9]-1.572.65×10-20.59
Mg-0.5Bi-0.5Sn-0.5Ca-1.492.26×10-20.51
表1  Mg-0.5Bi-0.5Sn-(0.5Ca) 合金的耐蚀性能对比
[1] Cho D H, Lee B W, Park J Y, et al. Effect of Mn addition on corrosion properties of biodegradable Mg-4Zn-0.5Ca-xMn alloys [J]. J. Alloy. Compd., 2017, 695: 1166
doi: 10.1016/j.jallcom.2016.10.244
[2] Wang Z Q, Xu C X, Yang L J, et al. Microstructure and corrosion resistance of medical degradable Mg-2Y-1Zn-xZr alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 113
[2] (王中琪, 许春香, 杨丽景 等. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 113)
[3] Wan T, Song S P, Wang J Z, et al. Research progress in corrosion behavior of biomedical magnesium alloys [J]. J. Mater. Eng., 2020, 48(1): 19
[3] (万天, 宋述鹏, 王今朝 等. 生物医用镁合金腐蚀行为的研究进展 [J]. 材料工程, 2020, 48(1): 19)
[4] Tok H Y, Hamzah E, Bakhsheshi-Rad H R. The role of bismuth on the microstructure and corrosion behavior of ternary Mg-1.2Ca-xBi alloys for biomedical applications [J]. J. Alloy. Compd., 2015, 640: 335
doi: 10.1016/j.jallcom.2015.03.217
[5] Pan H, Pang K, Cui F Z, et al. Effect of alloyed Sr on the microstructure and corrosion behavior of biodegradable Mg-Zn-Mn alloy in Hanks' solution [J]. Corros. Sci., 2019, 157: 420
doi: 10.1016/j.corsci.2019.06.022
[6] Liu Y H, Cheng W L, Zhang Y, et al. Microstructure, tensile properties, and corrosion resistance of extruded Mg-1Bi-1Zn alloy: the influence of minor Ca addition [J]. J. Alloy. Compd., 2020, 815: 152414
doi: 10.1016/j.jallcom.2019.152414
[7] Remennik S, Bartsch I, Willbold E, et al. New, fast corroding high ductility Mg-Bi-Ca and Mg-Bi-Si alloys, with no clinically observable gas formation in bone implants [J]. Mater. Sci. Eng., 2011, 176B: 1653
[8] Zeng R C, Qi W C, Cui H Z, et al. In vitro corrosion of as-extruded Mg-Ca alloys—The influence of Ca concentration [J]. Corros. Sci., 2015, 96: 23
doi: 10.1016/j.corsci.2015.03.018
[9] Liu Y, Cheng W L, Gu X J, et al. Tailoring the microstructural characteristic and improving the corrosion resistance of extruded dilute Mg-0.5Bi-0.5Sn alloy by microalloying with Mn [J]. J. Magnes. Alloy., 2021, 9: 1656
doi: 10.1016/j.jma.2020.07.010
[10] Bhattacharyya J J, Wang F, Wu P D, et al. Demonstration of alloying, thermal activation, and latent hardening effects on quasi-static and dynamic polycrystal plasticity of Mg alloy, WE43-T5, plate [J]. Int. J. Plast., 2016, 81: 123
doi: 10.1016/j.ijplas.2016.01.005
[11] Nayyeri G, Poole W J, Sinclair C W, et al. Measurement of the critical resolved shear stress for basal slip in magnesium alloys using instrumented indentation [J]. Scr. Mater., 2018, 156: 37
doi: 10.1016/j.scriptamat.2018.07.003
[12] Tahreen N, Zhang D F, Pan F S, et al. Hot deformation and work hardening behavior of an extruded Mg-Zn-Mn-Y alloy [J]. J. Mater. Sci. Technol., 2015, 31: 1161
doi: 10.1016/j.jmst.2015.10.001
[13] Cheng W L, Ma S C, Bai Y, et al. Corrosion behavior of Mg-6Bi-2Sn alloy in the simulated body fluid solution: the influence of microstructural characteristics [J]. J. Alloy. Compd., 2018, 731: 945
doi: 10.1016/j.jallcom.2017.10.073
[14] Mingo B, Mohedano M, Blawert C, et al. Role of Ca on the corrosion resistance of Mg-9Al and Mg-9Al-0.5Mn alloys [J]. J. Alloy. Compd., 2019, 811: 151992
doi: 10.1016/j.jallcom.2019.151992
[15] Qiao J S, Xia Z H, Liu L B, et al. Corrosion resistance of aluminum-magnesium bimetal composite material prepared by isothermal indirect extrusion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 255
[15] (乔及森, 夏宗辉, 刘立博 等. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能 [J]. 中国腐蚀与防护学报, 2021, 41: 255)
[16] Jiang W Y, Wang J F, Zhao W K, et al. Effect of Sn addition on the mechanical properties and bio-corrosion behavior of cytocompatible Mg-4Zn based alloys [J]. J. Magnes. Alloy., 2019, 7: 15
doi: 10.1016/j.jma.2019.02.002
[17] Feng C, Li M Z, Hou Y, et al. Effect of Ca on corrosion resistance behavior of as-cast AZ91 magnesium alloys [J]. Rare Met. Mater. Eng., 2015, 44: 41
doi: 10.1016/S1875-5372(15)30009-6
[18] Dai W L, Wang J X, Luo S, et al. Fabrication of super-hydrophobic surface on AM60 Mg-alloy and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 301
[18] (代卫丽, 王景行, 罗帅 等. AM60镁合金超疏水表面制备及防腐蚀性能的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 301)
[19] Wang X G, Gao K W, Yan L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 335
[19] (王晓鸽, 高克玮, 颜鲁春 等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 335)
[20] Feng Y J, Wei L, Chen X B, et al. Unexpected cathodic role of Mg41Sm5 phase in mitigating localized corrosion of extruded Mg-Sm-Zn-Zr alloy in NaCl solution [J]. Corros. Sci., 2019, 159: 108133
doi: 10.1016/j.corsci.2019.108133
[21] Yao H, Fang B Y, Cao J L, et al. Effect of Gd content on microstructure and corrosion resistance of as-extruded Mg-0.5Zr-1.8Zn-xGd alloys [J]. Chin. J. Nonferrous Met., 2021, 31: 2101
[21] (姚怀, 方博洋, 曹嘉龙 等. Gd含量对挤压态Mg-0.5Zr-1.8Zn-xGd生物镁合金组织及耐腐蚀性能的影响 [J]. 中国有色金属学报, 2021, 31: 2101)
[22] Feng H, Liu S H, Du Y, et al. Effect of the second phases on corrosion behavior of the Mg-Al-Zn alloys [J]. J. Alloy. Compd., 2017, 695: 2330
doi: 10.1016/j.jallcom.2016.11.100
[23] Wang X J, Chen Z N, Ren J, et al. Corrosion behavior of as-cast Mg-5Sn based alloys with In additions in 3.5wt%NaCl solution [J]. Corros. Sci., 2020, 164: 108318
doi: 10.1016/j.corsci.2019.108318
[1] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[2] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[3] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[4] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.
[5] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[6] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[7] 王洪伦, 杨华, 蔡辉, 李博文. Q235钢在海南濒海同区域户外暴晒环境和棚下环境的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 677-682.
[8] 黄家针, 黄涛, 杨丽景, 季灯平, 丁贺, 韦一, 宋振纶. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[9] 尚进, 古岩, 赵京, 王哲, 张博, 赵统君, 陈泽浩, 王金龙. 增材制造Hastelloy X合金在850 ℃混合硫酸盐中热腐蚀行为及其对力学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 671-676.
[10] 万红霞, 刘重麟, 王子安, 刘茹, 陈长风. P110S油套管在微含硫环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 371-376.
[11] 张佳欢, 崔中雨, 范林, 孙明先. 热处理工艺对Ti6321合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[12] 赵伊, 曹京宜, 方志刚, 冯亚菲, 韩卓, 孟凡帝, 王昭东, 王福会. A517Gr.Q海工钢在模拟海洋飞溅区的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 921-928.
[13] 丁康康, 刘少通, 郭为民, 苗依纯, 张彭辉, 程文华, 侯健. 聚乙烯青岛海洋大气环境腐蚀老化预测研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1070-1074.
[14] 黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[15] 梁志远, 徐一鸣, 王硕, 李玉峰, 赵钦新. 高等级合金CO2环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 613-620.