Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (3): 441-446    DOI: 10.11902/1005.4537.2021.239
  中国腐蚀与防护学会杰出青年学术成就奖论文专栏 本期目录 | 过刊浏览 |
高速列车动态服役环境腐蚀在线监测技术研究
孙晓光(), 王睿, 张志毅, 韩晓辉, 李刚卿
中车青岛四方机车车辆股份有限公司 青岛 266111
On-line Corrosion Monitoring Technology for High-speed Train in Dynamic Service Circumstance
SUN Xiaoguang(), WANG Rui, ZHANG Zhiyi, HAN Xiaohui, LI Gangqing
CRRC Qingdao Sifang Co. Ltd. , Qingdao 266111, China
全文: PDF(4315 KB)   HTML
摘要: 

基于电化学原理和无线通信技术,研制了高速列车材料腐蚀状态智能监控系统,分别在海南文昌、湖北武汉、山东青岛三地的环境腐蚀试验站及京广高铁在役高速动车组上进行了部署,并连续开展了6个月以上的腐蚀数据在线采集及分析,掌握了动车组车体铝合金材料及涂层6个月的腐蚀老化规律,为预测车辆结构材料的腐蚀风险、评估涂层的寿命衰减,加强动车组全生命周期安全管理提供了重要的数据支撑。

关键词 高速动车组腐蚀监测铝合金涂层    
Abstract

With the expansion of high-speed train operation area and the extension of service duration, corrosion has become an important factor threatening the safety and reliability of trains. Based on electrochemical principle and 4G wireless communication technology, a novel intelligent corrosion monitoring system for structural materials of high-speed train was developed. It was installed on a high-speed train traveling between Beijing and Guangzhou, as well as in three out-door exposure test stations in Wenchang, Wuhan, and Qingdao as a menas to perform comparatively examination of material corrosion. The 6-month continuous corrosion data of an Al-alloy and protective coating of high-speed train car-body, as well as those in the above test stations was collected and analyzed. The data provides important support for predicting the corrosion risk of vehicle structural materials, which is in favor of evaluating the life attenuation of coating and strengthening the safety management of the whole life cycle of high-speed train.

Key wordshigh-speed train    corrosion monitoring    Al-alloy    coating
收稿日期: 2021-09-15     
ZTFLH:  TG174  
基金资助:国家重点研发计划(2020YFE0204900)
通讯作者: 孙晓光     E-mail: sunx_sf@126.com
Corresponding author: SUN Xiaoguang     E-mail: sunx_sf@126.com
作者简介: 孙晓光,男,1984年生,博士,正高级工程师

引用本文:

孙晓光, 王睿, 张志毅, 韩晓辉, 李刚卿. 高速列车动态服役环境腐蚀在线监测技术研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 441-446.
Xiaoguang SUN, Rui WANG, Zhiyi ZHANG, Xiaohui HAN, Gangqing LI. On-line Corrosion Monitoring Technology for High-speed Train in Dynamic Service Circumstance. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 441-446.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.239      或      https://www.jcscp.org/CN/Y2022/V42/I3/441

图1  腐蚀在线监测系统组成示意图
图2  车体6005A铝合金在文昌、武汉、青岛及京广高铁服役状态的电化学阻抗谱
图3  车体涂层在文昌、武汉、青岛及京广高铁服役状态的老化规律曲线
图4  车体铝合金和涂层在4种工况下的腐蚀监测数据拟合曲线
PositionAnR2
Running high-speed train0.018530.233590.98985
Qingdao0.150741.098550.98563
Wuhan0.156371.131430.98142
Wenchang0.071991.347160.98504
表1  6005A铝合金在不同位置暴晒的大气腐蚀动力学参数
PositionAty0R2
Running high-speed train-713.510.118510.22760.95401
Qingdao-262.380.615550.37370.99366
Wuhan-194.420.69830.347460.99126
Wenchang-79.68540.818270.396050.9906
表2  不同厚度涂层在不同位置处大气暴晒时老化的动力学拟合参数
1 Wang J, Ma Y S. Exploration and Practice of China's High-Speed EMU Development Model [M]. Beijing: China Railway Publishing House Co. LTD, 2020: 14
1 王军, 马云双. 中国高速动车组发展模式探索与实践 [M]. 北京: 中国铁道出版社有限公司, 2020: 14
2 Zhao F, Jin D, Li H Y. Accelerated corrosion behaviors of aluminum alloy 2A12 in simulated coastal industrial atmosphere environment [J]. Corros. Prot., 2021, 42: 19
2 赵菲, 靳东, 李红英. 模拟沿海工业大气环境中2A12铝合金的加速腐蚀行为 [J]. 腐蚀与防护, 2021, 42: 19
3 Cai G Y. Degradation mechanism and modification of polyurethanecoating and rapid evaluation on its failure [D]. Wuhan: Huazhong University of Science and Technology, 2018
3 蔡光义. 聚氨酯涂层的老化机制及改性与失效评价方法研究 [D]. 武汉: 华中科技大学, 2018
4 Cui X F, Tan X M, Wang D, et al. Assessment of aging performance of polyurethane coating for 7B04 al-alloy with an accelerated testing spectrum [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 74
4 崔晓飞, 谭晓明, 王德等. 铝合金表面聚氨酯涂层在加速实验条件下的老化机制及规律研究 [J]. 中国腐蚀与防护学报, 2018, 38: 74
5 Su X T, Chen K F. Accelerating factor modeling of ultraviolet radiation aging test of train surface coating [J]. Equip. Environ. Eng., 2020, 17(6): 39
5 宿兴涛, 陈凯锋. 列车表面涂层光老化试验加速因子建模研究 [J]. 装备环境工程, 2020, 17(6): 39
6 Etchepare P L, Samelor D, Vergnes H, et al. Barrier properties and hydrothermal aging of amorphous alumina coatings applied on pharmaceutical vials [J]. Surf. Coat. Technol., 2021, 425: 127711
7 Sivakumar P, Du S M, Selter M, et al. Long-term thermal aging of parylene conformal coating under high humidity and its effects on tin whisker mitigation [J]. Polym. Degrad. Stabil., 2021, 191: 109667
8 Gao J, Li C, Lv Z, et al. Correlation between the surface aging of acrylic polyurethane coatings and environmental factors [J]. Prog. Org. Coat., 2019, 132: 362
9 Zhao Q Y, Guo C, Niu K K, et al. Long-term corrosion behavior of the 7A85 aluminum alloy in an industrial-marine atmospheric environment [J]. J. Mater. Res. Technol., 2021, 12: 1350
10 Bai Z H, Huang Y H, Li X G, et al. Environmental corrosion in industrial-marine atmosphere at qingdao of 7050 Al-alloy anodized in boric-and sulfuric-acid electrolyte [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 580
10 白子恒, 黄运华, 李晓刚等. 硫硼酸阳极氧化处理的7050铝合金在工业海洋大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2016, 36: 580
11 Zhao Q C, Luo L Z, Li X F, et al. Corrosion behavior of 7A85 aluminum alloy in two typical atmospheric environments [J]. Equip. Environ. Eng., 2020, 17(7): 70
11 赵全成, 罗来正, 黎小锋等. 两种典型大气环境下7A85铝合金的腐蚀行为研究 [J]. 装备环境工程, 2020, 17(7): 70
12 Wang L, Dong C F, Zhang D W, et al. Effect of alloying elements on initial corrosion behavior of aluminum alloy in Bangkok, Thailand [J]. Acta Metall. Sin., 2020, 56: 119
12 王力, 董超芳, 张达威等. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响 [J]. 金属学报, 2020, 56: 119
13 Zhao W H, Wang H W, Cai G Y, et al. Localized corrosion and corrosion inhibitor of Al-alloy AA6061 beneath electrolyte layers [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 366
13 赵苇杭, 王浩伟, 蔡光义等. AA6061铝合金在含盐薄液膜下的局部腐蚀与缓蚀机理 [J]. 中国腐蚀与防护学报, 2017, 37: 366
14 Wu J, An J F, Sun X L, et al. Corrosion behavior of stainless steel welded joints in marine atmosphere environment [J]. Mater. Prot., 2019, 52(4): 14
14 吴军, 安江峰, 孙学利等. 高铁不锈钢焊接接头在海洋大气环境中的腐蚀行为 [J]. 材料保护, 2019, 52(4): 14
15 Lin C, Wang F P, Li X G. The progress of research methods on atmospheric corrosion [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 249
15 林翠, 王凤平, 李晓刚. 大气腐蚀研究方法进展 [J]. 中国腐蚀与防护学报, 2004, 24: 249
16 Wang X H, Wang M Q, Li B W, et al. Application of atmospheric corrosion monitoring technique for atmospheric corrosion of Al-alloys [J]. Corros Sci. Prot. Technol., 2018, 30: 671
16 汪笑鹤, 汪明球, 李博文等. 大气环境腐蚀检测技术在铝合金大气腐蚀研究中的应用 [J]. 腐蚀科学与防护技术, 2018, 30: 671
17 Dai W, Wang X Y, Zhang M, et al. Corrosion monitoring method of porous aluminum alloy plate hole edges based on piezoelectric sensors [J]. Sensors (Basel), 2019, 19: 1106
18 Yu J S, Wan S, Zhao P, et al. Advances of atmospheric corrosion on-line monitoring techniques for electric power grid [J]. Equip. Environ. Eng., 2020, 17(4): 27
18 于金山, 万闪, 赵鹏等. 高压电网大气腐蚀在线监测技术进展 [J]. 装备环境工程, 2020, 17(4): 27
19 Cai G Y, Wang H W, Jiang D, et al. Impedance sensor for the early failure diagnosis of organic coatings [J]. J. Coat. Technol. Res., 2018, 15: 1259
20 Zhang D P, Sun M M, Cao X K, et al. Progress in corrosion inhibitor evaluation and corrosion monitoring technology in oil recovery industries [J]. Surf. Technol., 2020, 49(11): 1
20 张德平, 孙苗苗, 曹祥康等. 油气工业缓蚀剂评价与腐蚀监测技术进展 [J]. 表面技术, 2020, 49(11): 1
21 Dong Z H, Guo X P, Wei F. Remote corrosion monitoring system based on GPRS/GSM network [A]. Kunming, 2004: 7
21 董泽华, 郭兴蓬, 魏丰. 基于GPRS/GSM网络的远程腐蚀监控系统 [A] 第十三届全国缓蚀剂学术讨论会论文集 [C]. 昆明, 2004: 7
22 Jia Y B, Gao H B, Qian Z H, et al. Research and application of on-line monitoring technology of offshore wind power equipment corrosion [J]. Dev. Appl. Mater., 2021, 36(3): 95
22 贾彦兵, 高宏飚, 钱正宏等. 海上风电设备腐蚀在线监测技术研究与应用 [J]. 材料开发与应用, 2021, 36(3): 95
23 Zhang K, Li D F, Wen B W, et al. Comparative research on corrosion behaviors of 7B04 aluminium alloy on the ocean-going ship platform and offshore platform [J]. Surf. Technol., 2021, 50: 405
[1] 翁硕, 俞俊, 赵礼辉, 冯金芝, 郑松林. 腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 486-492.
[2] 陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
[3] 刘煊煊, 于金山, 高燕, 赵鹏, 王启伟, 杜卓玲, 张俊喜. APTES改性蒙脱土对镁合金表面杂化溶胶-凝胶涂层防护性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 464-470.
[4] 王永欣, 汪艺璇, 陈春林, 李祥, 贺南开, 李金龙. 具有“层中层”结构的Zr/[Al(Si)N/CrN]涂层制备及其在海水环境中腐蚀磨损特性[J]. 中国腐蚀与防护学报, 2022, 42(3): 345-357.
[5] 黄赵鑫, 朱志平, 周攀, 江源康, 贺明鹏, 王正刚. 换流站阀冷系统中丙二醇防冻液的腐蚀特性研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 471-478.
[6] 杨延格, 曹京宜, 王兴奇, 方志刚, 于宏飞, 于宝兴, 王福会. 轻合金锆/钛基转化膜的设计及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 387-394.
[7] 李玲, 杜汐然, 曲品权, 李建呈, 王金龙, 古岩, 张甲, 陈明辉, 王福会. 真空热处理对多弧离子镀NiCoCrAlY涂层高温氧化行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
[8] 吴家杰, 王艳丽. 熔盐堆用结构材料的热腐蚀及防护[J]. 中国腐蚀与防护学报, 2022, 42(2): 193-199.
[9] 文家新, 张欣, 刘云霞, 周永福, 刘克建. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[10] 邱盼盼, 舒小勇, 胡林丽, 杨韬, 房雨晴. Pt改性镍基高温合金铝化物涂层研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[11] 李旭嘉, 惠红海, 赵君文, 巫国强, 戴光泽. 多壁碳纳米管含量对无铬锌铝涂层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 324-330.
[12] 刘术辉, 刘斌, 徐大伟, 刘蔚, 陈凡伟, 刘思琪. 层状双金属氢氧化物防腐蚀涂层材料的研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 16-24.
[13] 李建永, 代殿宇, 钱程, 刁书磊, 刘金山, 路通鑫, 孙勇, 肖凤娟. 不锈钢表面聚苯胺纳米纤维/改性氧化石墨烯/水性环氧复合涂层的制备与防护性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 156-162.
[14] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[15] 高浩东, 崔宇, 刘莉, 孟凡帝, 刘叡, 郑宏鹏, 王福会. 深海压力-流速耦合环境对环氧玻璃鳞片涂层失效行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 39-50.