Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (1): 36-42    DOI: 10.11902/1005.4537.2020.087
  研究报告 本期目录 | 过刊浏览 |
海洋环境中芽孢杆菌对聚氨酯清漆涂层分解的影响
刘洋1, 吴进怡1, 闫小宇1, 柴柯2()
1.海南大学材料科学与工程学院 海口 570228
2.海南大学生命科学与药学院 热带生物资源教育部重点实验室 海口 570228
Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment
LIU Yang1, WU Jinyi1, YAN Xiaoyu1, CHAI Ke2()
1.School of Materials Science and Engineering, Hainan University, Haikou 570228, China
2.Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China
全文: PDF(3347 KB)   HTML
摘要: 

采用电化学技术、扫描电镜和红外光谱等多种方法研究了海洋环境中芽孢杆菌对聚氨酯清漆涂层分解作用以及对腐蚀行为的影响。结果表明,在浸泡时间为1 h时,芽孢杆菌并没有对聚氨酯清漆涂层产生明显的降解作用。随着浸泡时间的延长,在含有芽孢杆菌的海水中的涂层耐蚀性明显小于在无菌海水中涂层的耐蚀性,表明芽孢杆菌能导致涂层的降解。浸泡初期,在无菌海水和芽孢杆菌海水中,涂层电阻值约为108 Ω·cm2。经无菌海水浸泡13 d后,涂层电阻值下降为5.22×106 Ω·cm2,浸泡第35 d时,涂层电阻值变为5.46×106 Ω·cm2。而经芽孢杆菌海水浸泡样品的涂层电阻值在浸泡13和35 d后分别为2.16×106和7.96×105 Ω·cm2。芽孢杆菌海水浸泡涂层电阻值的减小量明显大于无菌海水浸泡涂层电阻值的减小量。扫描电镜的结果显示,在浸泡35 d后,在芽孢杆菌海水溶液中浸泡的涂层出现大量孔洞和粉化痕迹。由红外光谱结果可以观察到,浸泡在芽孢杆菌海水的N—H键和C—O键吸收峰比无菌海水中浸泡涂层低,说明芽孢杆菌可分解涂层。

关键词 芽孢杆菌聚氨酯清漆涂层海洋环境分解    
Abstract

The effect of Bacillus flexus on degradation and corrosion behavior of polyurethane varnish coating in marine environment was investigated by means of electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The results showed that the Bacillus flexus did not exhibit significant effect on the degradation of the polyurethane varnish coating after immersion in Bacillus flexus containing seawater for 1 h. With the extension of immersion time, the corrosion resistance of the coating was significantly lower in Bacillus flexus containing seawater than that in sterile seawater, indicating that Bacillus flexus could cause the degradation of the coating. The coating resistance was about 108 Ω·cm2 at the initial stage of immersion both in sterile seawater and Bacillus flexus containing seawater. However, the corrosion resistance of the coating dropped to 5.22×106 and 5.46×106 Ω·cm2 after immersion in sterile seawater for 13 and 35 d respectively. As comparison, the corrosion resistance of the coating decreased to 2.16×106 and 7.96×105 Ω·cm2 after immersion in Bacillus flexus containing seawater for 13 and 35 d, respectively. The facts showed that the corrosion resistance of the coating in Bacillus flexus containing seawater decreased larger than that in sterile seawater. SEM observation result showed that after immersion for 35 d in Bacillus flexus inoculated seawater, numerous pores and pulverization signs could be observed of the coating surface. From the result of FTIR, the absorption peaks of N—H bond and C—O bond of coatings after immersion in Bacillus flexus containing seawater were significantly lower than that in sterile seawater, indicating that Bacillus flexus can clearly degrade the polyurethane varnish coating.

Key wordsBacillus flexus    polyurethane varnish coating    marine environment    degradation
收稿日期: 2020-05-19     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51761011)
通讯作者: 柴柯     E-mail: chaike888@sina.com
Corresponding author: CHAI Ke     E-mail: chaike888@sina.com
作者简介: 刘洋,男,1996年生,硕士生

引用本文:

刘洋, 吴进怡, 闫小宇, 柴柯. 海洋环境中芽孢杆菌对聚氨酯清漆涂层分解的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
Yang LIU, Jinyi WU, Xiaoyu YAN, Ke CHAI. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2021, 41(1): 36-42.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.087      或      https://www.jcscp.org/CN/Y2021/V41/I1/36

图1  聚氨酯清漆涂层在无菌海水和含芽孢杆菌海水中浸泡不同时间的Nyquist图
图2  在无菌海水中浸泡1~48 h、5~35 d和在含芽孢杆菌海水中浸泡1~48 h、5~29 d、35 d的等效电路图
图3  无菌海水和芽孢杆菌海水中Rcoat随浸泡时间的变化
图4  未浸泡、无菌和芽孢杆菌海水浸泡35 d的涂层SEM像
图5  未浸泡、无菌和芽孢杆菌海水溶液浸泡35 d后涂层的红外光谱图
1 Gu J D. Microbiological deterioration and degradation of synthetic polymeric materials: Recent research advances [J]. Int. Biodeterior. Biodegrad., 2003, 52: 69
2 An W X. The study of marine corrosion and detection of vessel steel [D]. Qingdao: Ocean University of China, 2009
2 安闻讯. 船用钢海水腐蚀与检测研究 [D]. 青岛: 中国海洋大学, 2009
3 Duan J Z, Hou B Y. Research progress of biocorrosion, biofouling and their control techniques for marine steel and reinforced concrete infrastructure [J]. J. Highway Trans. Res. Dev., 2010, 27(9): 118
3 段继周, 侯保荣. 海洋工程设施生物腐蚀、污损和防护技术研究进展 [J]. 公路交通科技, 2010, 27(9): 118
4 Xiang L B, Zhang J C, Liu X R, et al. Microbiological influenced corrosion and microbiological influenced corrosion inhibition—Overview and a case application in oilfield produced water [J]. Corros. Sci. Prot. Technol., 2019, 31: 85
4 向龙斌, 张吉昌, 刘心蕊等. 微生物腐蚀与采出水的微生物防腐蚀—回顾与应用实例 [J]. 腐蚀科学与防护技术, 2019, 31: 85
5 Hou B R, Lu D Z. Corrosion cost and preventive strategies in China [J]. Bull. Chin. Acade. Sci., 2018, 33: 601
5 侯保荣, 路东柱. 我国腐蚀成本及其防控策略 [J]. 中国科学院院刊, 2018, 33: 601
6 Xu P, Ren H Y, Wang C Z, et al. Research progress on mixture microbial corrosion and analytical method on metal surface [J]. Surf. Technol., 2019, 48: 216
6 许萍, 任恒阳, 汪长征等. 金属表面混合微生物腐蚀及分析方法研究进展 [J]. 表面技术, 2019, 48: 216
7 Yang W J, Neoh K G, Kang E T, et al. Polymer brush coatings for combating marine biofouling [J]. Prog. Polym. Sci., 2014, 39: 1017
8 Kandasamy K. Polythene and plastics-degrading microbes from the mangrove soil [J]. Rev. Biol. Trop., 2003, 51: 3
9 Banerjee A, Ghoshal A K. Phenol degradation by Bacillus cereus: Pathway and kinetic modeling [J]. Bioresour. Technol., 2010, 101: 5501
10 Walczak M, Brzezinska M S, Sionkowska A, et al. Biofilm formation on the surface of polylactide during its biodegradation in different environments [J]. Colloid. Surf., 2015, 136B: 340
11 Zhang R Z, Tian W J, Wang C Y, et al. Strong hydrophobic anticorrosive surface properties of polyurethane composites with two-component modified isocyanate [J]. Total Corros. Control, 2020, 34(2): 9
11 张瑞珠, 田伟杰, 王重洋等. 双组份改性聚氨酯材料强疏水防腐表面性能研究 [J]. 全面腐蚀控制, 2020, 34(2): 9
12 Wu J Y, Luo Q, Xiao W L, et al. Influence of vibrio on corrosion behaviors and mechanical properties of 45 steel in seawater [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 343
12 吴进怡, 罗琦, 肖伟龙等. 海水环境中弧菌对45钢腐蚀行为及力学性能的影响 [J]. 中国腐蚀与防护学报, 2012, 32: 343
13 Xiao W L, Chai K, Yang Y H, et al. Effect of microbe on the corrosion behaviors and mechanical properties of 25 carbon steel in tropical seawater condition [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 359
13 肖伟龙, 柴柯, 杨雨辉等. 25钢在热带海洋环境下海水中的微生物腐蚀及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 359
14 Wang Y, Tang Y, Xie C S, et al. The applications of the electrochemical impedance spectroscopy in the materials researches [J]. Mater. Rep., 2011, 25(13): 5
14 王芸, 汤滢, 谢长生等. 电化学阻抗谱在材料研究中的应用 [J]. 材料导报, 2011, 25(13): 5
15 Encinas-Sánchez V, De Miguel M T, Lasanta M I, et al. Electrochemical impedance spectroscopy (EIS): An efficient technique for monitoring corrosion processes in molten salt environments in CSP applications [J]. Solar Energy Mater. Solar Cells, 2019, 191: 157
16 Zhao X. Characteristics of electrochemical impedance spectroscopy in deterioration process of organic coating [D]. Qingdao: Ocean University of China, 2007
16 赵霞. 有机涂层失效过程的电化学阻抗谱响应特征研究 [D]. 青岛: 中国海洋大学, 2007
17 Dhoke S K, Khanna A S. Electrochemical impedance spectroscopy (EIS) study of nano-alumina modified alkyd based waterborne coatings [J]. Prog. Org. Coat., 2012, 74: 92
18 Zhang H F, Gao Y M, Cao X, et al. Effect of modified nano-ZnO on corrosion resistance of acrylic polyurethane coating [J]. Electroplat. Finish., 2010, 29(2): 54
18 张海凤, 高延敏, 曹霞等. 改性纳米氧化锌对丙烯酸聚氨酯涂层防腐性能的影响 [J]. 电镀与涂饰, 2010, 29(2): 54
19 Wang J C, Yang S L, Li G, et al. Synthesis of a new-type carbonific and its application in intumescent flame-retardant (IFR)/polyurethane coatings [J]. J. Fire Sci., 2003, 21: 245
20 Liu J L, Zong E M, Fu H Y, et al. Adsorption of aromatic compounds on porous covalent triazine-based framework [J]. J. Colloid Interface Sci., 2012, 372: 99
21 Liu Q, Jin S B, Wang Z Y, et al. Study on protective properties of graphene modified coatings [J]. Paint Coat. Ind., 2020, 50(4): 14
21 刘茜, 金少波, 王震宇等. 石墨烯改性涂层防护性能研究 [J]. 涂料工业, 2020, 50(4): 14
22 Zhang W X, Wu J Y, Yan X Y, et al. Influence of pseudomonas sp. on degradation of polyurethane varnish coating in marine environment [J]. Surf. Technol., 2019, 48(7): 302
22 张伟雄, 吴进怡, 闫小宇等. 海洋环境中假单胞菌对聚氨酯清漆涂层分解的影响 [J]. 表面技术, 2019, 48(7): 302
23 Da B, Yu H F, Ma H Y, et al. Equivalent electrical circuits fitting of electrochemical impedance spectroscopy for rebar steel corrosion of coral aggregate concrete [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 260
23 达波, 余红发, 麻海燕等. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究 [J]. 中国腐蚀与防护学报, 2019, 39: 260
24 Huttunen-Saarivirta E, Yudin V E, Myagkova L A, et al. Corrosion protection of galvanized steel by polyimide coatings: EIS and SEM investigations [J]. Prog. Org. Coat., 2011, 72: 269
25 Zhang Y X, Chen S G, Li H, et al. Preparation of silicon nitride doped epoxy-based composite coatings and their corrosion resistance [J]. Surf. Technol., 2018, 47(1): 100
25 张永兴, 陈守刚, 李航等. 氮化硅掺杂环氧树脂复合涂层的制备及耐腐蚀性能研究 [J]. 表面技术, 2018, 47(1): 100
[1] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[2] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[3] 王玉昆, 刘静, 胡骞, 黄峰. S2-对A710钢在NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 233-240.
[4] 王娜娜, 王锋涛, 常亮, 朱志平. 锅炉补给水中典型有机物分解规律及其对低压缸叶片腐蚀特性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 597-604.
[5] 孙朝晖,Masoumeh Moradi,杨丽景,Robabeh Bagheri,宋振纶,陈艳霞. 越南芽孢杆菌对2507双相不锈钢加速腐蚀的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 659-664.
[6] 王理,刘春阳,韩振宇,佟文伟. 燃气轮机涡轮零部件及材料热腐蚀行为与评价方法研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 399-403.
[7] 刘薇,王佳. 海洋浪溅区环境对材料腐蚀行为影响的研究进展[J]. 中国腐蚀与防护学报, 2010, 30(6): 504-512.
[8] 王春丽,吴建华,李庆芬.  海洋环境电偶腐蚀研究现状与展望[J]. 中国腐蚀与防护学报, 2010, 30(5): 416-420.
[9] 燕尽尘 赵犁丰 赵永韬. 经验模式分解对恒电量瞬态响应的滤波处理[J]. 中国腐蚀与防护学报, 2009, 29(3): 205-209.
[10] 张晓云 . 环境对高强度铝合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2007, 27(6): 354-362 .
[11] 刘大扬; 魏开金; 李文军 . 南海榆林海域环境因素对钢局部腐蚀的影响[J]. 中国腐蚀与防护学报, 2003, 23(4): 211-216 .
[12] 冯哲圣; 陈金菊; 卢云 . 高纯铝在含Cl-溶液中电化学噪声的小波包子带能量特征[J]. 中国腐蚀与防护学报, 2003, 23(4): 221-226 .