Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (2): 140-146    DOI: 10.11902/1005.4537.2018.007
  研究报告 本期目录 | 过刊浏览 |
植酸水溶液中聚吡咯涂层在Cu基体上的制备及其在腐蚀防护中的应用
郭娜, 类延华(), 刘涛, 常雪婷, 尹衍升
上海海事大学海洋科学与工程学院 上海 201306
Electrochemical Deposition of Polypyrrole Coating on Copper from Aqueous Phytate Solution and Its Application in Corrosion Protection
Na GUO, Yanhua LEI(), Tao LIU, Xueting CHANG, Yansheng YIN
College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
全文: PDF(3189 KB)   HTML
摘要: 

利用植酸作为电解质及掺杂剂,成功地在Cu基体表面制备了具有强效防腐特性的聚吡咯 (PPy) 涂层。采用原位电化学石英微晶分析天平 (EQCM) 分析技术对聚吡咯在Cu电极表面上的沉积过程进行了探讨,利用扫描电子显微镜 (SEM) 以及Fourier转换全反射-红外吸收光谱对制备的导电聚合物PPy涂层形貌与成分进行了表征,研究了涂层的抗腐蚀性能。结果表明,电聚合过程中,Cu基体表面首先沉积一层具有保护作用的Phytate-Cu盐层,可抑制基体进一步溶解并有助于聚吡咯的形核及长大。酸盐掺杂的聚吡咯涂层在3.5% (质量分数) NaCl溶液中对Cu基体表现出良好的防护性,pH值为4的弱酸性条件下制备的聚吡咯膜具有最好的耐蚀保护性能。EQCM-循环伏安结果证实,植酸根掺杂的聚吡咯呈现出阳离子选择透过特性,抑制了Cl-的扩散,并显著地提高了Cu基体的抗腐蚀特性。

关键词 聚吡咯Cu防腐电化学石英微晶天平植酸    
Abstract

Phytic acid (C6H18O24P6, Phy) is the principal storage form of phosphorus in many plant tissues, especially bran, corn and seeds. Herein, high protective and stabile polypyrrole (PPy) films were directly electro-synthesized on Cu from aqueous phytic acid solution. The electrodeposition process was monitored with an electrochemical quartz crystal microbalance (EQCM), while the prepared PPy films were characterized by means of SEM, FT-IR and Raman spectroscopy. It was indicated that the growth of these films was facilitated by the initial oxidation of the Cu-electrode in the phytate solution to generate a Cu-phytate pseudo-passive layer. After that, highly adherent and homogenous polypyrrole was facilitated were electrodeposited on Cu in the phytic acid solution. Corrosion protection property of the PPy films were examined through immersion test in 3.5%(mass fraction)NaCl solution in terms of the amount of Cu ions dissolved from the PPy covered Cu during immersion, which presented the excellent stability and corrosion protective ability of the PPy films. Among others, the PPy film synthesized from the pH=4 phytic acid solution exhibited the best protective performance. EQCM-CV tests indicated that the PPy film doped with phytate anions, acting as cationic perm-selective membrane, can effectively inhibit the diffusion of Cl- to the substrate and therewith improve the anti-corrosion property.

Key wordspolypyrrole    copper    corrosion protection    EQCM    phytic acid
收稿日期: 2018-01-05     
基金资助:国家重点研发计划 (2016YFB0300704),国家重点基础研究发展计划 (2014CB643306) 和国家自然科学基金 (51602195)
作者简介:

作者简介 郭娜,女,1983年生,博士生

引用本文:

郭娜, 类延华, 刘涛, 常雪婷, 尹衍升. 植酸水溶液中聚吡咯涂层在Cu基体上的制备及其在腐蚀防护中的应用[J]. 中国腐蚀与防护学报, 2018, 38(2): 140-146.
Na GUO, Yanhua LEI, Tao LIU, Xueting CHANG, Yansheng YIN. Electrochemical Deposition of Polypyrrole Coating on Copper from Aqueous Phytate Solution and Its Application in Corrosion Protection. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 140-146.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.007      或      https://www.jcscp.org/CN/Y2018/V38/I2/140

图1  沉积制备聚吡咯过程示意图
图2  Au电极和Cu电极在聚吡咯聚合过程中电极电势和质量随电量的变化趋势
图3  聚吡咯在Cu电极表面聚合的电位-电量曲线及终止点样品表面的FT-IR谱和XPS谱
图4  空白Cu基体及聚合过程终止点A和B点样品表面的SEM像
图5  Cu基体表面聚吡咯在植酸溶液中的聚合过程示意图
图6  pH值为4的植酸溶液中借助于恒电流方法制备的聚吡咯的SEM像
图7  未沉积与不同条件下沉积聚吡咯的Cu电极在3.5%NaCl溶液中开路电位随浸泡时间的变化曲线及其浸泡480 h以后溶液中溶解的Cu离子的含量
图8  未沉积与沉积聚吡咯的Cu电极在3.5%NaCl溶液中的极化曲线
图9  沉积聚吡咯膜的Au电极在3.5%NaCl溶液中的循环伏安曲线
[1] Das T K, Prusty S.Review on conducting polymers and their applications[J]. Polym.-Plast. Technol. Eng., 2012, 51: 1487
[2] Waltman R J, Bargon J.Electrically conducting polymers: A review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology[J]. Can. J. Chem., 1986, 64: 76
[3] Ates M, Karazehir T, Sezai Sarac A.Conducting polymers and their applications[J]. Curr. Phys. Chem., 2012, 2: 224
[4] Nguyen D N, Yoon H.Recent advances in nanostructured conducting polymers: From synthesis to practical applications[J]. Polymers, 2016, 8: 118
[5] de Berry D W. Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating[J]. J. Electrochem. Soc., 1985, 132: 1022
[6] Herrasti P, del Rio A I, Recio J. Electrodeposition of homogeneous and adherent polypyrrole on copper for corrosion protection[J]. Electrochim. Acta, 2007, 52: 6496
[7] Santos L M M S, Lacroix J C, Chane-Ching K I, et al. Electrochemical synthesis of polypyrrole films on copper electrodes in acidic and neutral aqueous media[J]. J. Electroanal. Chem., 2006, 587: 67
[8] Tüken T, Yaz?c? B, Erbil M.The electrochemical synthesis and corrosion performance of polypyrrole on brass and copper[J]. Prog. Org. Coat., 2004, 51: 152
[9] Shinde V, Sainkar S R, Patil P P.Corrosion protective poly (o-toluidine) coatings on copper[J]. Corros. Sci., 2005, 47: 1352
[10] Prissanaroon W, Brack N, Pigram P J, et al.Electropolymerisation of pyrrole on copper in aqueous media[J]. Synth. Met., 2004, 142: 25
[11] Fenelon A M, Breslin C B.The electropolymerization of pyrrole at a CuNi electrode: Corrosion protection properties[J]. Corros. Sci., 2003, 45: 2837
[12] Redondo M I, Breslin C B.Polypyrrole electrodeposited on copper from an aqueous phosphate solution: Corrosion protection properties[J]. Corros. Sci., 2007, 49: 1765
[13] Cascalheira A C, Aeiyach S, Lacaze P C, et al.Electrochemical synthesis and redox behaviour of polypyrrole coatings on copper in salicylate aqueous solution[J]. Electrochim. Acta, 2003, 48: 2523
[14] Annibaldi V, Rooney A D, Breslin C B.Corrosion protection of copper using polypyrrole electrosynthesised from a salicylate solution[J]. Corros. Sci., 2012, 59: 179
[15] Graf E.Applications of phytic acid[J]. J. Am. Oil Chem. Soc., 1983, 60: 1861
[16] Crea F, de Stefano C, Milea D, et al. Formation and stability of phytate complexes in solution[J]. Coord. Chem. Rev., 2008, 252: 1108
[17] Lei Y H, Sheng N, Hyono A, et al.Effect of benzotriazole (BTA) addition on polypyrrole film formation on copper and its corrosion protection[J]. Prog. Org. Coat., 2014, 77: 339
[18] Cui X F, Li Q F, Li Y, et al.Microstructure and corrosion resistance of phytic acid conversion coatings for magnesium alloy[J]. Appl. Surf. Sci., 2008, 225: 2098
[19] Zhu R L, Li G X, Liu X Y.Electrosynthesis of polypyrrole and corrosion protection for stainless steel[J]. J. Chin. Soc. Corros. Prot., 2008, 28: 7(朱日龙, 李国希, 刘晓阳. 聚吡咯的电化学合成及其对不锈钢的保护作用[J]. 中国腐蚀与防护学报, 2008, 28: 7)
[1] 卢爽, 任正博, 谢锦印, 刘琳. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(6): 577-584.
[2] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[3] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[4] 王贵容,郑宏鹏,蔡华洋,邵亚薇,王艳秋,孟国哲,刘斌. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[5] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[6] 和佳乐, 王菊琳. 初始pH值和Cl-浓度对CuCl水解的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 397-402.
[7] 常亮, 师超, 邵亚薇, 王艳秋, 刘斌, 孟国哲. 植酸转化膜对环氧清漆防腐性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[8] 梁书源, 姜翠玉. 电厂燃油锅炉腐蚀机理及防腐添加剂研究进展[J]. 中国腐蚀与防护学报, 2018, 38(2): 105-116.
[9] 钱备, 刘成宝, 宋祖伟, 任俊锋. 纳米容器改性环氧涂层对Q235碳钢的防腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[10] 王娜娜, 王锋涛, 常亮, 朱志平. 锅炉补给水中典型有机物分解规律及其对低压缸叶片腐蚀特性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 597-604.
[11] 蔡光义,王浩伟,赵苇杭,董泽华. 添加纳米CeO2对聚氨酯涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(5): 411-420.
[12] 赵洪涛, 陆卫中, 李京, 郑玉贵. 无溶剂环氧防腐涂层在不同流速模拟海水冲刷条件下的失效行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 329-340.
[13] 王晓霖, 闫茂成, 舒韵, 孙成, 柯伟. 破损涂层下管线钢的交流电干扰腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[14] 肖斌,向军淮,张洪华. 四元Fe-Cu-Ni-Al合金900 ℃下的恒温及循环氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 69-73.
[15] 郝永胜,Luqman Abdullahi SANI,宋立新,徐国宝,葛铁军,方庆红. 中性和酸性溶液中Q235碳钢表面沉积植酸转化膜的耐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.