Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (2): 162-167    DOI: 10.11902/1005.4537.2015.231
  研究报告 本期目录 | 过刊浏览 |
316L不锈钢在不同pH值硼酸溶液中的电化学行为研究
王彦亮,陈旭(),王际东,宋博,范东升,何川
辽宁石油化工大学石油天然气工程学院 抚顺 113001
Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH
Yanliang WANG,Xu CHEN(),Jidong WANG,Bo SONG,Dongsheng FAN,Chuan HE
School of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
全文: PDF(895 KB)   HTML
摘要: 

采用动电位极化、电化学阻抗及Mott-Schottky技术研究了316L不锈钢在pH值分别为4,7和11的硼酸溶液中钝化膜的电化学行为,并对钝化膜成分进行了X射线光电子能谱分析。结果表明:316L不锈钢在酸性、中性和碱性硼酸溶液中均能形成稳定的钝化膜,且随pH值增加钝化电位区间减小,过钝电位显著下降。碱性硼酸溶液中316L不锈钢过钝电流显著增加。钝化膜完整性在中性硼酸溶液中最好,酸性溶液中最差。Mott-Schottky曲线结果表明,在酸性环境中随着电位的升高,钝化膜由n型向p型转变;在中性和碱性环境中,钝化膜半导体类型分别为n型和p型。这是由于随pH值增加,Cr的氢氧化物消失,钝化膜中Fe由FeO(OH) 转变为Fe3O4;在碱性环境下钝化膜中Cr2O3含量减少导致耐蚀性下降。

关键词 316L不锈钢pH值钝化膜电化学XPS    
Abstract

The electrochemical characteristics of the passivation film formed on 316L stainless steel in borate buffer solutions with pH of 4, 7 and 11, respectively were characterized by means of potentiodynamic polarization, electrochemical impedance spectroscopy and Mott-Schottky technology. The composition of passive film was analysized by X-ray photoelectron spectroscopy (XPS). The results showed that the stable passivation film could form on the steel surface in all the three borate buffer solutions. The passivation potential range decreased and the transpassive potential dropped significantly with the increasing pH value. The transpassive current of 316L stainless steel in alkaline borate buffer solution increased significantly. The integrity of the passive film was the best in the neutral solution, while it was the worst in the acid solution. The Mott-Schottky results showed that the semiconductor type of the passive film transferred from n-type to p-type with the increasing potential in acid solution. It was n-type and p-type semiconductor in the neutral and alkaline solution, respectively. It was attributed to that the chromium hydroxide dropped down and the formed iron compound was transformed from FeO(OH) to Fe3O4. The content of Cr2O3 was decreased in alkaline solution, which resulted in lower corrosion resistance.

Key words316L stainless steel    pH    passivation film    electrochemical behavior    XPS
收稿日期: 2015-12-23     
基金资助:国家自然科学基金 (51201009) 和辽宁省自然科学基金 (2013020078)

引用本文:

王彦亮,陈旭,王际东,宋博,范东升,何川. 316L不锈钢在不同pH值硼酸溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
Yanliang WANG, Xu CHEN, Jidong WANG, Bo SONG, Dongsheng FAN, Chuan HE. Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 162-167.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.231      或      https://www.jcscp.org/CN/Y2017/V37/I2/162

图1  316L不锈钢在不同pH值溶液中的极化曲线
pH Ecorr V Passive potential range V IpμAcm-2
4 -0.527 -0.318~1.14 0.295
7 -0.220 0.096~0.959 0.323
11 -0.378 -0.03~0.703 0.426
表1  极化曲线拟合结果
图2  316L不锈钢在不同pH值溶液中的EIS
图3  等效模拟电路
pH Rs / Ωcm2 Q1 / Fcm-2 n1 R1 / Ωcm2 Q2 / Fcm-2 n2 R2 / Ωcm2
4 0.34 1.07×10-4 0.887 1.73×10-5 4.25×10-10 1.00 1156
7 0.01 3.29×10-10 1.000 1446 7.50×10-5 0.82 2.29×105
11 189 7.60×10-5 0.999 16.47 5.48×10-5 0.89 1.38×105
表2  EIS等效电路拟合结果
图4  316L不锈钢在不同pH值溶液中的Mott-Schottky曲线
图5  316L不锈钢在不同pH值溶液中形成的钝化膜的XPS谱
[1] Ford F, Andresen P.Corrosion in nuclear systems [A]. Corrosion Mechanisms in Theory and Practice [M]. 2nd ed. Boca Raton: CRC Press, 2002
[2] Sato Y, Atsumi T, Shoji T.Continuous monitoring of back wall stress corrosion cracking growth in sensitized type 304 stainless steel weldment by means of potential drop techniques[J]. Int. J. Pres.Ves. Pip., 2007, 84: 274
[3] Almubarak A, Belkharchouche M, Hussain A.Stress corrosion cracking of sensitized austenitic stainless steels in Kuwait petroleum refineries[J]. Anti-Corros. Methods Mater., 2010, 57: 58
[4] Lu B T, Luo J L, Lu Y C.Correlation between film rupture ductility and PbSCC of Alloy 800[J]. Electrochim. Acta, 2008, 53: 4122
[5] Lu B T, Luo J L, Peng B, et al.Condition for lead-induced corrosion of Alloy 690 in an alkaline steam generator crevice solution[J]. Corrosion, 2009, 65: 601
[6] Lu B T, Luo J L, Lu Y C.Effects of pH on lead-induced passivity degradation of nuclear steam generator tubing alloy in high temperature crevice chemistries[J]. Electrochim. Acta, 2013, 87: 824
[7] Maurice V, Yang W P, Marcus P.XPS and STM study of passive films formed on Fe-22Cr(110) single-crystal surfaces[J]. J. Electrochem. Soc., 1996, 143: 1182
[8] Hashimoto K.2002 W.R. Whitney award lecture: In pursuit of new corrosion-resistant alloys[J]. Corrosion, 2002, 58: 715
[9] Huang J B, Wu X Q, Han E-H.Influence of pH on electrochemical properties of passive films formed on Alloy 690 in high temperature aqueous environments[J]. Corros. Sci., 2009, 51: 2976
[10] Li C T, Cheng X Q, Dong C F, et al.Effect of pH value on electrochemical behavior of passivation film on alloy 690[J]. Mater. Protect., 2010, 43(12): 4
[10] (李成涛, 程学群, 董超芳等. pH值对690合金钝化膜电化学性能的影响[J]. 材料保护, 2010, 43(12): 4)
[11] Freire L, Carmezim M J, Ferreira M G S, et al. The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study[J]. Electrochim. Acta, 2010, 55: 6174
[12] Paola A D.Semiconducting properties of passive films on stainless steels[J]. Electrochim. Acta, 1989, 34: 203
[13] Sikora J, Sikora E, Macdonald D D.The electronic structure of the passive film on tungsten[J]. Electrochim. Acta, 2000, 45: 1875
[14] Zhao J M, Gu F, Zhao X H, et al.Semiconductor properties of anodic oxide film formed on aluminum[J]. Acta Phys.-Chim. Sin.,2008, 24: 147
[14] (赵景茂, 谷丰, 赵旭辉等. 铝阳极氧化膜的半导体特性[J]. 物理化学学报, 2008, 24: 147)
[15] Zhuang P Q, Xiao Z W, Zhu X D, et al.Study on semiconductor properties of anodic oxide films on tantalum[J]. Electr. Compon.Mater., 2011, 30(8): 35
[15] (庄朋强, 肖占文, 朱向东等. 钽阳极氧化膜的半导体性研究[J]. 电子元件与材料, 2011, 30(8): 35)
[16] Cheng X Q, Li X G, Du C W.Electrochemical behavior of 316L stainless steel in Cl- containing acetic acid solution under high temperature[J]. Acta Metall. Sin., 2006, 42: 299
[16] (程学群, 李晓刚, 杜翠薇. 316L不锈钢在含高温Cl-醋酸溶液中的电化学行为[J]. 金属学报, 2006, 42: 299)
[17] Chen C F, Jiang R J, Zhang G A, et al.Analysis of the space charge capacitance of bipolar semiconductor passive films[J]. Acta Phys.-Chim. Sin., 2009, 25: 463
[17] (陈长风, 姜瑞景, 张国安等. 双极性半导体钝化膜空间电荷电容分析[J]. 物理化学学报, 2009, 25: 463)
[18] Ningshen S, KamachiMudali U, Mittal V K, et al. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels[J]. Corros. Sci., 2007, 49: 481
[19] Lin Y H, Du R G, Hu R G, et al.A correlation study of corrosion resistance and semiconductor properties for the electrochemically modified passive film of stainless steel[J]. Acta Phys.-Chim. Sin.,2005, 21: 740
[19] (林玉华, 杜荣归, 胡融刚等. 不锈钢钝化膜耐蚀性与半导体特性的关联研究[J]. 物理化学学报, 2005, 21: 740)
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[5] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[6] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[7] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[8] 翟思昕, 杨幸运, 杨继兰, 顾剑锋. 淬火-配分-回火钢在模拟海水环境中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 398-408.
[9] 白海涛, 杨敏, 董小卫, 马云, 王瑞. CO2腐蚀产物膜的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[10] 付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[11] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[12] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[13] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[14] 贾巧燕, 王贝, 王赟, 张雷, 王清, 姚海元, 李清平, 路民旭. X65管线钢在油水两相界面处的CO2腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[15] 张晨, 陆原, 赵景茂. CO2/H2S腐蚀体系中咪唑啉季铵盐与3种阳离子表面活性剂间的缓蚀协同效应[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.