Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (1): 18-25    DOI: 10.11902/1005.4537.2016.223
Orginal Article Current Issue | Archive | Adv Search |
Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium
Jie ZHANG1(), Xiuhua HU1,2, Chuanbo ZHENG2, Jizhou DUAN1, Baorong HOU1
1 Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2 College of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Download:  HTML  PDF(4408KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It is known that calcareous deposit formed on the surface of metallic material may have effect on the adhesion of marine micro-organism to and the corrosion behavior of the substrate material. Meanwhile, micro-organisms may in turn affect the formation process of calcareous layer. To clearly understand the above mentioned phenomena, the electrochemical behavior of the Q235 carbon steel without and with a pre-deposited calcareous layer in the f/2 culture media with the absence and presence of chlorella vulgaris respectively, as well as, the adhesion behavior of chlorella vulgaris on the substrate were investigated by using fluorescence microscopy, surface analysis techniques and electrochemical measure method. Results show that the adhesion process of chlorella vulgaris reached the equilibrium phase of adsorption-desorption after immersion of the steel in the medium for 48 h. Absorption is the decisive step in the initial attachment stage of chlorella vulgaris on the steel with calcareous deposit, and then the adherent microalgae began to proliferate. The calcareous deposit could promote the adhesion of microalgae, however, the calcareous deposit was apt to spall off in the f/2 culture medium without chlorella vulgaris. During the immersion process, composite films of calcareous deposit and microalgae may formed on the steel surface, which was compact with good adhesion to the substrate and presented blockage effect to the charge transfer and inward diffusion of oxygen, thereby can effectively inhibit the corrosion of the steel.

Key words:  Q235 carbon steel      chlorella vulgaris      calcareous deposit      EIS      corrosion behavior     
Received:  23 November 2016     
ZTFLH:  TG174.3  
Fund: Supported by National Natural Science Foundation of China (41376003 and 41006054) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA13040405)

Cite this article: 

Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 18-25.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.223     OR     https://www.jcscp.org/EN/Y2018/V38/I1/18

Fig.1  Schematic illustration of experimental device
Fig.2  Fluorescence microscope images of bare steel (a1~a5) and calcareous deposit steel (b1~b5) samples after immersion in chlorella vulgaris culture media for 3 h (a1, b1), 6 h (a2, b2), 24 h (a3, b3), 48 h (a4, b4) and 72 h (a5, b5)
Time / h Bare steel Calcareous deposit
3 0.12% 7.61%
6 3.15% 13.40%
24 14.10% 24.87%
48 17.59% 29.08%
72 20.08% 42.01%
Table 1  Variations of coverage ratio of chlorella vulgaris on the surface of bare steel and calcareous deposit steel samples after immersion in chlorella vulgaris culture media for different time
Fig.3  Processes of microbe adsorption on metal surface in seawater
Fig.4  Surface images of calcareous deposit steel after immersion in f/2 culture medium without (a, b) and with (c, d) chlorella vulgaris for 10 d
Fig.5  EDS analysis results of the surface of calcareous deposit steel after immersion in f/2 culture medium without (a) and with (b) chlorella vulgaris for 10 d
Condition Na Mg Al Si P S Balance
Without chlorella vulgaris 3.096 0.168 0.048 0.769 0.096 4.993 29.504
With chlorella vulgaris 1.908 0.399 0.083 1.146 0.0133 0.0549 44.714
Table 2  Element contents of the surface of calcareous deposit steel immersed in f/2 culture medium without and with chlorella vulgaris for 10 d (mass fraction / %)
Fig.6  EIS results of calcareous deposit steel immersed in f/2 culture medium without (a) and with (b) chlorella vulgaris
Fig.7  Equivalent circuit model for EIS of calcareous deposit steel immersed in f/2 culture medium
Immerse time / d Rsol Qf Rf Qdl Rct
Ωcm2 Yf / 10-6 Ω-1cm-2sn nf Ωcm2 Ydl / 10-6 Ω-1cm-2sn ndl 104 Ωcm2
1 6.027 251.60 0.681 946.10 428.6 0.580 2.676
3 22.550 196.50 0.745 174.60 697.6 0.670 1.347
5 24.200 135.50 0.801 167.30 728.3 0.637 1.227
7 26.400 379.20 0.719 682.20 791.6 0.603 1.369
9 10.170 388.90 0.621 382.40 504.4 0.720 0.929
11 29.310 302.60 0.503 91.30 831.0 0.618 0.748
13 5.766 1996.00 0.384 235.50 907.7 0.603 0.568
15 4.335 60.20 0.841 130.60 521.6 0.607 0.293
Table 3  Electrochemical parameters obtained from EIS of calcareous deposit steel immersed in f/2 culture medium without chlorella vulgaris
Immerse time / d Rsol Qf Rf Qdl Rct
Ωcm2 Yf / 10-6 Ω-1cm-2sn nf Ωcm2 Ydl / 10-6 Ω-1cm-2sn ndl 104 Ωcm2
1 6.635 171.50 0.689 631.4 138.9 0.732 1.227
3 9.250 243.80 0.643 1649.0 169.3 0.862 1.183
5 8.876 76.47 0.594 1717.0 110.5 0.584 1.595
7 22.160 305.90 0.566 1422.0 100.1 0.662 3.426
9 23.870 327.90 0.564 1304.0 105.8 0.583 2.808
11 9.784 70.50 0.533 651.7 223.0 0.638 1.211
13 4.335 45.13 0.597 371.5 223.8 0.644 1.060
15 4.335 497.60 0.588 736.6 208.7 0.641 1.038
Table 4  Electrochemical parameters obtained from EIS of calcareous deposit steel immersed in f/2 culture medium with chlorella vulgaris
[1] Wei G, Xiong R C.Green chemistry and perspectives on corrosion protection[J]. Corros. Sci. Prot. Technol., 2001, 13: 33(魏刚, 熊蓉春. 绿色化学与防腐蚀技术的发展方向[J]. 腐蚀科学与防护技术, 2001, 13: 33)
[2] Cao Z Y.Study for calcareous deposits under initial cathodic protection in simulated deep ocean environment [D]. Qingdao: Ocean University of China, 2010(曹振宇. 模拟深海环境阴极保护初期钙镁沉积层的研究 [D]. 青岛: 中国海洋大学, 2010)
[3] Hu J J, Shi M W.Corrosion and anticorrosion technology in offshore platforms[J]. China Offshore Platform, 2008, 23(6): 39(胡津津, 石明伟. 海洋平台的腐蚀及防腐技术[J]. 中国海洋平台, 2008, 23(6): 39)
[4] Wen G M, Zheng F Y.Formation and application of calcareous deposits in the cathodic protection of seawater[J]. Corros. Prot., 1995, 16: 50(温国谋, 郑辅养. 海水中阴极保护时钙质沉积层的形成及其应用[J]. 腐蚀与防护, 1995, 16: 50)
[5] Rousseau C, Baraud F, Leleyter L, et al.Calcareous deposit formed under cathodic protection in the presence of natural marine sediments: A 12 month experiment[J]. Corros. Sci., 2010, 52: 2206
[6] Barchiche C, Deslouis C, Festy D, et al.Characterization of calcareous deposits in artificial seawater by impedance techniques: 3—Deposit of CaCO3 in the presence of Mg(II)[J]. Electrochim. Acta, 2003, 48: 1645
[7] Deslouis C, Festy D, Gil O, et al.Characterization of calcareous deposits in artificial sea water by impedance techniques—I. Deposit of CaCO3 without Mg(OH)2[J]. Electrochim. Acta, 1998, 43: 1891
[8] Yang Y F, Scantlebury J D, Koroleva E V.A study of calcareous deposits on cathodically protected mild steel in artificial seawater[J]. Metals, 2015, 5: 439
[9] Deslouis C, Falaras P, Gil O, et al.Influence of clay on calcareous deposit in natural and artificial sea water[J]. Electrochim. Acta, 2006, 51: 3173
[10] Sosa E, García-Arriaga V, Castaneda H.Impedance distribution at the interface of the API steel X65 in marine environment[J]. Electrochim. Acta, 2006, 51: 1855
[11] Eashwar M, Sathish Kunar P, Ravishankar R, et al.Sunlight-enhanced calcareous deposition on cathodic stainless steel in natural seawater[J]. Biofouling, 2013, 29: 185
[12] Wang J W, Zhang J, Chen S G, et al.Influence of calcareous deposit on corrosion behavior of Q235 carbon steel in f/2 culture medium with Amphora[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 535(汪江伟, 张杰, 陈守刚等. 钙质层对Q235碳钢在含双眉藻f/2培养基中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35: 535)
[13] Irving T E, Allen D G.Species and material considerations in the formation and development of microalgal biofilms[J]. Appl. Microbiol. Biotechnol., 2011, 92: 283
[14] Wang J W.Study of calcareous deposit formed by cathodic protection for anticorrosion of Q235 carbon steel in bio-fouling environment [D]. Qingdao: Ocean University of China, 2015(汪江伟. 海洋污损生物环境下钙质层对Q235碳钢腐蚀行为影响研究 [D]. 青岛: 中国海洋大学, 2015)
[15] Liu S X, Zhang D.Effect of microalgae on electrochemical corrosion behavior of 316L stainless steel in f/2 medium [A]. Chinese Society for Oceanology and Limnology[C]. Qingdao: Chinese Society for Oceanology and Limnology, 2012(刘淑霞, 张盾. 微藻对316L不锈钢在f/2培养液中电化学腐蚀行为影响研究 [A]. 中国海洋湖沼学会第十次会员代表大会暨2012海洋腐蚀与生物污损学术研讨会论文集[C]. 青岛: 中国海洋湖沼学会, 2012)
[16] Wirtanen G, Ahola H, Mattila-Sandholm T.Evaluation of cleaning procedures in elimination of biofilm from stainless steel surfaces in open process equipment[J]. Food Bioprod. Process., 1995, 73C: 9
[17] Wang W.Study on the relationship between microbiofilm and the electrochemical behavior of metal in Marine Environment [D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences,2003(王伟. 海洋环境中微生物膜与金属电化学状态相关性研究 [D].青岛: 中国科学院海洋研究所, 2003)
[18] Whitehead K A, Rogers D, Colligon J, et al.Use of the atomic force microscope to determine the effect of substratum surface topography on the ease of bacterial removal[J]. Colloid. Surf. B- Biointerfaces, 2006, 51: 44
[19] Wang W, Wang J, Xu H B, et al.Influence of biofilms adsorption kinetics on the open-circuit-potential changes of passive metals in seawater[J]. J. Chin. Soc. Corros. Prot., 2006, 26: 65(王伟, 王佳, 徐海波等. 海洋环境中微生物膜吸附动力学过程对钝态金属开路电位变化特征的影响[J]. 中国腐蚀与防护学报, 2006, 26: 65)
[20] Ji W S, Xu B, Xu H S, et al.Studies on the attachment of marine bacteria to biotic and abiotic surfaces[J]. J. Ocean Univ. Qingdao, 1991, 21(2): 61(纪伟尚, 许兵, 徐怀恕等. 海洋细菌在生物表面和非生物表面附着的研究[J]. 青岛海洋大学学报, 1991, 21(2): 61)
[21] Ates M.Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces[J]. Prog. Org. Coat., 2011, 71: 1
[22] Yi W, Zhang D, Liu H Q, et al.Influence of sulphate-reducing bacteria on environmental parameters and marine corrosion behavior of Q235 steel in aerobic conditions[J]. Electrochim. Acta, 2010, 55: 1528
[23] Xu H L, Jiao X M, Liu S S.Fluorescence measurement of surface dielectric constant of cell membrane[J]. Acta Biophys. Sin., 1993, 9: 234(徐海楼, 焦选茂, 刘树森. 生物膜表面介电常数的荧光测量[J]. 生物物理学报, 1993, 9: 234)
[1] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[2] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[3] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[4] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[5] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[6] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[7] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[8] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[9] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[10] GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[11] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[12] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[13] Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[14] Xiaofei CUI, Xiaoming TAN, De WANG, Ang QIAN. Assessment of Aging Performance of Polyurethane Coating for 7B04 Al-alloy with an Accelerated Testing Spectrum[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[15] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
No Suggested Reading articles found!