Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (1): 35-40    
  研究报告 本期目录 | 过刊浏览 |
溶液环境对模拟剥离涂层下X70钢腐蚀行为的影响
陈旭1;2;李晓刚1;杜翠薇1; 梁平1
1. 北京科技大学材料科学与工程学院 北京 100083
2. 辽宁石油化工大学石油与天然气工程学院 抚顺 113001
EFFECTS OF SOLUTION ENVIRONMENTS ON CORROSION BEHAVIORS OF X70 STEELS UNDER SIMULATED DISBONDED COATING
CHEN Xu1;2; LI Xiaogang1; DU Cuiwei1; LIANG Ping1
1. School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083
2. College of Petroleum Engineering; Liaoning Shihua University; Fushun 113001
全文: PDF(696 KB)  
摘要: 

采用矩形缝隙装置,研究了阴极极化条件下本体Na2SO4溶液浓度、pH 值以及本体溶液的含氧状况对模拟剥离涂层下溶液的化学和电化学环境的影响,分析了剥离区域内X70钢表面发生的电化学反应。结果表明,增加本体Na2SO4溶液的浓度虽然有利于阴极电流在剥离涂层内传输,但会导致钢板表面钝化膜的破坏而发生腐蚀。本体溶液pH值为酸性时缝内的化学环境变化迅速,缝口处发生腐蚀反应;而碱性条件下剥离区的pH值基本不变。本体溶液供氧量的减少降低了剥离区域内阴极保护的有效距离。外加电位的中断使缝内溶液酸化,X70钢处于自腐蚀状态。

关键词 X70钢缝隙腐蚀阴极极化电位分布pH值    
Abstract

A rectangle crevice assembly was used to study the crevice corrosion behaviors of X70 steels in Na2SO4 solutions under cathodic polarization condition. Effects of bulk solution concentration, pH, dissolved oxygen concentration on the electrochemical and chemical environments under the simulated disbanded coating were analyzed. It is shown that the higher bulk solution concentration was in favor of the cathodic current flowing into the crevice. However, the passivation film on the steel was attacked and corrosion occurred. The pH values of the solution under the disbonded coating with the alkaline bulk solution hardly changed while it changed rapidly with the acidic one and the steel at the opening was corroded. The available cathodic protection distance decreased with the dissolved oxygen being removed in bulk solution. The switching off of the applied potential led to the solution acidification and a free corrosion state of the X70 steel.

Key wordsX70 steel    crevice corrosion    cathodic protection    potential distribution    oxygen    pH
收稿日期: 2008-07-04     
ZTFLH: 

TG172.4

 
基金资助:

国家科技部基础条件平台建设项目(2005DKA10400)资助

通讯作者: 陈旭     E-mail: cx0402@yahoo.cn
Corresponding author: CHEN Xu     E-mail: cx0402@yahoo.cn
作者简介: 陈旭,女,1974年生,博士,研究方向为金属材料的腐蚀与防护

引用本文:

陈旭;李晓刚;杜翠薇; 梁平. 溶液环境对模拟剥离涂层下X70钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(1): 35-40.
CHEN Xu, LI Xiao-Gang, DU Cui-Wei, LIANG Beng. EFFECTS OF SOLUTION ENVIRONMENTS ON CORROSION BEHAVIORS OF X70 STEELS UNDER SIMULATED DISBONDED COATING. J Chin Soc Corr Pro, 2010, 30(1): 35-40.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I1/35

[1] Chin D T, Sabde G M. Modeling transport process and current distribute in a cathodically protected crevice [J].Corrosion, 2000, 56(8): 783-793
[2] Song Y Q, Du C W, Li X G. Electrochemical corrosion behavior of carbon steel with bulk coating holidays [J]. J. Univ. Sci. Technol.Beijing (Miner. Metall. Mater.), 2006, 13(2): 37-43
[3] Puiggali M, Rousserie S, Touzet M.Fatigue crack initiation on low-carbon steel pipes in a near-neurtral-pH environment under potential control conditions [J]. Corrosion, 2002,58(11): 961-970
[4] Sridhar N, Dunn D S, Seth M. Application of a general reactive transport model to predict environment under disbonded coating [J]. Corrosion, 2001, 57(7): 598-613
[5] Yan M C, Wang J Q, Ke W, et al. Effectiveness of cathodic protection under simulated disbonded coating on pipelines [J]. J. Chin.Soc. Corros. Prot., 2007, 27(5): 257-262
    (闫茂成,王俭秋,柯伟等. 埋地管线剥离涂层覆盖下阴极保护的有效性 [J]. 中国腐蚀与防护学报, 2007, 27(5): 257-262)
[6] Li H L,Gao K W,Qiao L J,et al. Strength effect in stress corrosion cracking of high-strength steel in aqueous solution [J]. Corrosion, 2001, 57(4): 295-299
[7] Yan M C, Wang J Q, Han E H. Local environment under simulated disbonded coating on steel pipelines in soil solution [J]. Corros. Sci., 2008,50(5): 1331-1339
[8] Li Z F, Gan F X, Mao X H. A study on cathodic protection against crevice corrosion in dilute NaCl solutions [J].Corros. Sci., 2002, 44(4): 689-701
[9] Jack T R, Erno B, Krist K.Generation on near neutral pH and high pH SCC environments on buried pipelines [R]. Corrosion/2000, NACE International, Houston, TX, 2000: 211
[10] Song F M, Kirk D W, Graydon J W, et al. Steel corrosion under a disbonded coating with a holiday-Part 1: The model and validation [J]. Corrosion, 2002, 58(12): 1015-1024
[11] Chen W,King F,Vokes E.Characteristics of near-neutral-pH stress corrosion cracks in an X65 pipeline [J]. Corrosion, 2002, 58(3): 267-275
[12] Parkins R N,Blanchard W K,Delanty B S.Transgranular stress corrosion cracking of high-pressure pipelines in contact with solution of near neutral [J]. Corrosion, 1994, 50(5): 394-408
[13] Gu B, Luo J, Mao X.Hydrogen-facilitated anodic dissolution-type stress corrosion cracking of pipeline steels in near-neutral pH solution [J]. Corrosion, 1999, 55(1): 96-106
[14] Liu X, Yang W. The susceptible environmental conditions of stress corrosion cracking of gas pipelines [J].Mater. Mech. Eng., 2002, 26(1): 5-11
     (刘杏,杨武.天然气长输管线应力腐蚀破裂的敏感性条件 [J].机械工程材料,2002, 26(1): 5-11)
[15] Cao C N. The Environment Corrosion of Materials in China [M]. Beijing: Chemical Industry Press, 2005
     (曹楚南.中国材料的自然环境腐蚀 [M].北京:化学工业出版社,2005)
[16] Song F M, Jones D A, Kirk D W. Modeling pipeline corrosion within a disc-shaped crevice for various cathodic protection at the holiday and the effect of crevice geometry [R]. Corrosion /2005, Paper no.05137
[17] Song F M, Jones D A, Kirk D W. Predicting corrosion and current flow within a disc crevice on coated steels [J]. Corrosion, 2005, 61(2): 145-152
[18] Gan F,Sun Z W,Sabde G,et al. Cathodic protection to mitigate external corrosion of underground steel pipe beneath disbonded coating [J]. Corrosion,1994,50(10): 804-816
[19] Yan M C, Weng Y J. High pH environment under coating on cathodic protection pipelines [J]. J. Chin. Soc. Corros. Prot.,2004, 24(2): 95-99
     (闫茂成,翁永基. 阴极保护管线破损涂层下高pH环境形成规律 [J]. 中国腐蚀与防护学报,2004, 24(2): 95-99)
[20] Yan M C, Weng Y J. Effect of environmental solution on electrochemical behaviors related to SCC of pipe line steels [J]. J. Chin. Soc. Corros. Prot., 2005, 25(1): 34-38
(闫茂成,翁永基. 环境溶液对管道钢应力腐蚀过程电化学行为的影响 [J]. 中国腐蚀与防护学报,2005, 25(1): 34-38)
[21] Song F M, Sridhar N. Modeling pipeline crevice corrosion under a disbonded coating with or without cathodic protection under transient and steady state conditions [J]. Corros. Sci., 2008, 50(1): 70-83
[22] Cherry B W, Gould A N. Pitting corrosion of nominally protected land-based pipelines [J]. Mater. Perform., 1990, 29(8): 22-31
[23] Brousseau R, Qian S. Distribution of steady-state current underneath a disbanded coatings [J]. Corrosion, 1994, 50(12): 907-911
[24] Perdomo J J, Chabica M E, Song I. Chemical and electrochemical conditions on steel under disbonded coatings: the effect of previously corrosion surface and wet and dry cycles [J]. Corros. Sci., 2001, 43(3): 515-532

[1] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[3] 刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[4] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[5] 赵柏杰, 范益, 李镇镇, 张博威, 程学群. 不同类型接触面对316L不锈钢缝隙腐蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[6] 谢冬柏, 洪昊, 王文, 彭晓, 多树旺. 模拟燃烧环境介质和温度对不锈钢表面氧化物形态的影响研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[7] 付海波, 刘晓茹, 孙媛, 曹大力. 环氧树脂/重结晶碳化硅复合材料的抗腐蚀性能[J]. 中国腐蚀与防护学报, 2020, 40(4): 373-380.
[8] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[9] 王廷勇, 董如意, 许实, 王辉. 石墨烯改性Ti/IrTaSnSb-G金属氧化物阳极在低温和低盐NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2020, 40(3): 289-294.
[10] 方旭东, 刘晓, 徐芳泓, 李瑞涛, 朱忠亮, 张乃强. 超超临界电站国产奥氏体钢C-HRA-5在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[11] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[12] 秦越强, 左勇, 申淼. FLiNaK-CrF3/CrF2氧化还原缓冲熔盐体系对316L不锈钢耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[13] 郑艳欣, 刘颖, 宋青松, 郑峰, 贾玉川, 韩培德. 含铁铜基陶瓷复合材料高温氧化行为与耐磨性研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[14] 白鹏凯, 许萍. 水处理领域中的绿色环保阻垢剂及其研究进展[J]. 中国腐蚀与防护学报, 2020, 40(2): 87-95.
[15] 范益,陈林恒,蔡佳兴,代芹芹,马宏驰,程学群. 热轧AH36船板钢在室内仓储条件下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.