Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (3): 227-232    DOI: 10.11902/1005.4537.2016.016
  本期目录 | 过刊浏览 |
KH-550对AZ31B镁合金表面微弧氧化膜结构及性能的影响
崔学军1,2(),代鑫1,郑冰玉1,张颖君1,2
1 四川理工学院材料科学与工程学院 自贡 643000
2 四川理工学院 材料腐蚀与防护四川省重点实验室 自贡 643000
Effect of KH-550 Content on Structure and Properties of a Micro-arc Oxidation Coating on Mg-alloy AZ31B
Xuejun CUI1,2(),Xin DAI1,Bingyu ZHENG1,Yingjun ZHANG1,2
1 School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
2 Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
全文: PDF(4313 KB)   HTML
摘要: 

通过微弧氧化 (MAO) 的方法在Na2SiO3-KOH-NaF电解质溶液中处理AZ31B镁合金,利用SEM、XRD和电化学等表征手段,研究了硅烷偶联剂KH550对MAO膜结构及性能的影响。结果表明,KH-550浓度在0~20 mL/L范围内增加时,MAO膜表面微孔尺寸和粗糙度先减小后增大,膜层厚度和耐蚀性能先增加后降低;引入KH-550后并未改变MAO膜的物相结构。分析认为KH-550通过硅烷醇的吸附和化学作用,增加了阳极表面薄弱区域离子移动的阻力,抑制镁合金在MAO过程的弧光放电,从而提高了膜层的生长效率,细化并均匀化微孔,改善了MAO膜的耐蚀能力。

关键词 镁合金涂层阳极氧化硅烷偶联剂抑弧效应    
Abstract

Influence of the content of coupling reagent KH-550 on the morphology, phase constituent and corrosion resistance in 3.5%NaCl solution of micro-arc oxidation (MAO) coatings, prepared on Mg-alloy AZ31B by a constant voltage mode in an electrolyte of Na2SiO3-KOH-NaF, was investigated by scanning electron microscopy, X-ray diffractometer and electrochemical methods. Results showed that the size of micro pores and the roughness of the MAO coatings are increased firstly and then decreased with the increasing amount of KH-550 in a concentration range of 0~20 mL/L, but its thickness and corrosion resistance show a converse result. However, the phase constituents of the MAO coatings are not changed. The preliminary analysis suggested that KH-550 hinders the ionic migration on certain weak areas, where silanol was adsorbed and/or reacted with, and thereby the arc discharge was modulated during MAO process. Therefore, KH-550 improves the growing efficiency of MAO coating, homogenizes the size and distribution of micro pores, and enhances the corrosion protection ability of the MAO coating on Mg-alloy.

Key wordsmagnesium alloy    coating    plasma electrolytic oxidation    silane coupling agent    restraining sparking
收稿日期: 2016-01-09     
基金资助:四川省科技支撑计划 (2016JZ0032),省级大学生创新创业训练计划 (201610622100) 和四川理工学院人才引进基金(2017RCL15)

引用本文:

崔学军,代鑫,郑冰玉,张颖君. KH-550对AZ31B镁合金表面微弧氧化膜结构及性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 227-232.
Xuejun CUI, Xin DAI, Bingyu ZHENG, Yingjun ZHANG. Effect of KH-550 Content on Structure and Properties of a Micro-arc Oxidation Coating on Mg-alloy AZ31B. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 227-232.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.016      或      https://www.jcscp.org/CN/Y2017/V37/I3/227

Number Content of KH-550mLL-1 pHvalue Conductivityms
a 0 13.77 23.94
b 1 13.50 23.31
c 4 13.61 23.24
d 7 13.38 23.19
e 10 13.38 22.81
f 20 13.16 23.08
表1  电解质溶液的pH值和电导率与KH-550浓度的关系
图1  电解液中添加不同浓度KH-550时所得MAO膜的表面形貌
图2  KH-550含量与MAO膜厚度的关系
图3  KH-550含量与MAO膜粗糙度的关系
图4  添加7 mL/L KH-550前后MAO样品的XRD谱
图5  MAO处理样品在3.5%NaCl溶液中的极化曲线
Concentration of KH-550 / % -EcorrmV Icorr μAcm-2 -bc mVdec-1
0 1522 0.415 231
1 1446 0.159 263
4 1416 0.110 261
7 1380 0.120 197
10 1306 0.178 253
20 1324 0.570 287
表2  与图5极化曲线相对应的拟合电化学参数值
[1] Yerokhin A L, Nie X, Leyland A, et al.Plasma electrolysis for surface engineering[J]. Surf. Coat. Technol., 1999, 122: 73
[2] Song G L.Recent progress in corrosion and protection of magnesium alloys[J]. Adv. Eng. Mater., 2005, 7: 563
[3] Vladimirov B V, Krit B L, Lyudin V B, et al.Microarc oxidation of magnesium alloys: A review[J]. Surf. Eng. Appl. Electrochem., 2014, 50: 195
[4] Zhang L, Zhang J Q, Chen C F, et al.Advances in microarc oxidation coated AZ31 Mg alloys for biomedical applications[J]. Corros. Sci., 2015, 91: 7
[5] Zozulin A J, Bartak D E.Anodized coating for magnesium alloys[J]. Met. Finish., 1994, 92: 39
[6] Kozak O.Anti-corrosive coating on magnesium and its alloys [P]. US Pat, 4184926A, 1980
[7] Khaselev O, Yahalom J.The anodic behavior of binary Mg-Al alloys in KOH-aluminate solutions[J]. Corros. Sci., 1998, 40: 1149
[8] Duan H P, Yan C W, Wang F H.Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution[J]. Electrochim. Acta, 2007, 52: 5002
[9] Al Bosta M M S, Ma K J. Suggested mechanism for the MAO ceramic coating on aluminium substrates using bipolar current mode in the alkaline silicate electrolytes[J]. Appl. Surf. Sci., 2014, 308: 121
[10] Zhang T.The research on anodizing of magnesium alloys under restraining sparking [D]. Changsha: Hunan University, 2004: 13
[10] (张涛. 镁及其合金表面抑弧阳极氧化研究 [D]. 长沙: 湖南大学, 2004: 13)
[11] Kuang Y F, Luo S L, Zhou H H, et al.Anode oxidating electrolysing liquid under inhibiting arc state of magnesium alloy and process for anode oxidating[P]. China Pat, CN1793438A, 2015
[11] (旷亚非, 罗胜联, 周海晖等. 镁合金在抑弧状态下的阳极氧化电解液及阳极氧化方法 [P]. 中国专利, CN1793438A, 2015)
[12] Wu D, Liu X D, Lv K, et al.Influence of glycerol on micro-arc oxidation process and properties of the ceramic coatings on AZ91D magnesium alloy[J]. Mater. Prot., 2009, 42(2): 1
[12] (乌迪, 刘向东, 吕凯等. 丙三醇对镁合金微弧氧化过程及膜层的影响[J]. 材料保护, 2009, 42(2): 1)
[13] Luo S L, Zhang T, Zhou H H, et al.Effect of organic amine on anodizing of magnesium alloys[J]. Chin. J. Nonferrous Met., 2004, 14: 691
[13] (罗胜联, 张涛, 周海晖等. 有机胺对镁合金阳极氧化的影响 [J]. 中国有色金属学报, 2004, 14: 691)
[14] Liu Y, Wei Z L, Yang F W, et al.Anodizing of AZ91D magnesium alloy in borate-terephthalic acid electrolyte[J]. Acta Phys.-Chim. Sin., 2011, 27: 2385
[15] Zhang M Z, Guan C S, Wang W Q.Application of silane coupling agents in pretreatment of metal surface[J]. Corro. Sci. Prot. Technol., 2001, 13: 96
[15] (张明宗, 管从胜, 王威强. 有机硅烷偶联剂在金属表面预处理中的应用[J]. 腐蚀科学与防护技术, 2001, 13: 96)
[16] Liu L, Hu J M, Zhang J Q, et al.Progress in anti-corrosive treatment of metals by silanization[J]. J. Chin. Soc. Corros. Prot., 2006, 26: 59
[16] (刘倞, 胡吉明, 张鉴清等. 金属表面硅烷化防护处理及其研究现状[J]. 中国腐蚀与防护学报, 2006, 26: 59)
[17] Cui X J, Wang R, Wei J S, et al.Effect of electrical parameters on micromorphology and corrosion resistance of micro-arc oxidation coating on az31b mg alloy[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 495
[17] (崔学军, 王荣, 魏劲松等. 电参数对AZ31B镁合金微弧氧化膜微观形貌及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34: 495)
[18] Cui X J, Lin X Z, Liu C H, et al.Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy[J]. Corros. Sci., 2015, 90: 402
[19] Cui X J, Li M T, Yang R S, et al.Silane coupling agent arc-suppressed micro arc oxidation electrolyte solution and micro arc oxidation film preparation method [P]. China Pat, CN105063722A, 2015
[19] (崔学军, 李明田, 杨瑞嵩等. 一种硅烷偶联剂抑弧的微弧氧化电解质溶液及微弧氧化膜制备方法 [P]. 中国专利, CN105063722A, 2015)
[20] Mi T, Jiang B, Liu Z, et al.Plasma formation mechanism of microarc oxidation[J]. Electrochim. Acta, 2014, 123: 369
[21] Yagi S, Sengoku A, Kubota K, et al.Surface modification of ACM522 magnesium alloy by plasma electrolytic oxidation in phosphate electrolyte[J]. Corros. Sci., 2012, 57: 74
[22] Lu X P, Blawert C, Kainer K U, et al.Investigation of the formation mechanisms of plasma electrolytic oxidation coatings on Mg alloy AM50 using particles[J]. Electrochim. Acta, 2016, 196: 680
[23] Veys-Renaux D, Rocca E, Martin J, et al.Initial stages of AZ91 Mg alloy micro-arc anodizing: Growth mechanisms and effect on the corrosion resistance[J]. Electrochim. Acta, 2014, 124: 36
[1] 任岩, 钱余海, 张鑫涛, 徐敬军, 左君, 李美栓. 热震对包覆ZrB2-SiC-La2O3/SiC涂层渗硅石墨力学性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 刘洋, 吴进怡, 闫小宇, 柴柯. 海洋环境中芽孢杆菌对聚氨酯清漆涂层分解的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[4] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[5] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[6] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[7] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[8] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[9] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[10] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[11] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[12] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[13] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[14] 王贵容,郑宏鹏,蔡华洋,邵亚薇,王艳秋,孟国哲,刘斌. 环氧防腐涂料在模拟海水干湿交替条件下的失效过程[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[15] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.