Please wait a minute...
J Chin Soc Corr Pro  2009, Vol. 29 Issue (5): 333-338    DOI: 1005-4537(2009)05-0333-06
技术报告 Current Issue | Archive | Adv Search |
THE EFFECT OF HYDROPHOBIC GROUP ON THE INHIBITION BEHAVIOR OF IMIDAZOLINE FOR CO2 CORROSION OF N80 IN 3\%NaCl SOLUTION
LIU Xia1;2; ZHENG Yugui1
1. State Key Laboratory for Corrosion and Protection; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
2. Department of Applied Chemistry; Shenyang Institute of Chemical Technology; Shenyang 110142
Download:  PDF(2580KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Four kinds of imidazoline inhibitors with different hydrophobic group i.e. 2-heptadecyl-aminoethyl-imidazoline (IM-17), 2-undecyl-aminoethyl-imidazoline (IM-11), 2-nonyl-aminoethyl-imidazoline (IM-9), 2-butyl-aminoethyl-imidazoline (IM-4) had been synthesized and characterized by IR and UV spectra. The inhibition performance of these imidazoline inhibitors for CO2 corrosion of N80 in 3% NaCl solution was investigated through linear polarization resistance, polarization curve and electrochemical impedance spectroscopy under static and flow conditions. The results showed that the inhibition efficiency under static condition decreased in the order of IM-9>IM-4>IM-11>IM-17, i.e. the inhibition efficiency was related with both the solubility and the length of carbon chain of hydrophobic group of imidazolines. In contrast, the inhibition efficiency at 5 m/s decreased in the order of IM-9>IM-1>IM-17>IM-4, and solution flow (5 m/s) dramatically worsened the inhibition performance of imidazolines.

Key words:  Carbon dioxide corrosion      Corrosion inhibitor      Imidazoline      Hydrophobic group      Flow condition     
Received:  06 May 2008     
ZTFLH: 

TG174.42

 
Corresponding Authors:  Liu Xia     E-mail:  ygzheng@imr.ac.cn

Cite this article: 

LIU Xia ZHENG Yugui. THE EFFECT OF HYDROPHOBIC GROUP ON THE INHIBITION BEHAVIOR OF IMIDAZOLINE FOR CO2 CORROSION OF N80 IN 3\%NaCl SOLUTION. J Chin Soc Corr Pro, 2009, 29(5): 333-338.

URL: 

https://www.jcscp.org/EN/1005-4537(2009)05-0333-06     OR     https://www.jcscp.org/EN/Y2009/V29/I5/333

[1] Wu S L, Cui Z D, He F. Characterization of the surface film formed from carbon dioxide corrosion on N80 steel [J]. Mater.Lett., 2004, 58: 1076-1081
[2] Wu S L, Wu Z D, Cui G X. EIS study of the surface film on the surface of carbon steel from supercritical carbon dioxide corrosion [J] Appl. Surf. Sci., 2004, 228: 17-25
[3] Seala S, Sapre K, Kalea A. Effect of multiphase flow on corrosion of C-steel in presence of inhibitor [J]. Corros. Sci., 2000, 42:1623-1634
[4] Altoe P, Pimenta G, Moulin C F. Evaluation of oilfield corrosion inhibitors in CO2 containing media [J]. Electrochim. Acta,1996, 41 (7-8): 1165-1172
[5] Lo'pez D A, Simison S N, de Sa'nchez S R. The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole [J]. Electrochim. Acta, 2003, 48: 845-854
[6] Cao C. On electrochemical techniques for interface inhibitor research [J]. Corros. Sci., 1996, 38(12): 2073-2082
[7] Ramachandran S, Jovancicevic V. Molecular modeling of the inhibition of mild steel carbon dioxide corrosion by imidazolines [A]. Corrosion /99 [C]. Houston,Texas: NACE, 1999, 17
[8] Edwards A, Osborne C, Webster S, et al. Mechanistic studies of the corrosion inhibitor oleic imidazoline [J]. Corros. Sci., 1993, 36(2): 315-325
[9] Tan Y J, Bailey S, Kinsella B. An investigation of the formation and destruction of corrosion inhibitor films using electrochemical impedance spectroscopy (EIS)[J]. Corros. Sci., 1996,38(9): 1545-1561
[10] Zhang X Y, Ma L M, Du Y L. Inhibition mechanism of imidazoline amide in CO2 solution [J]. Appl. Chem., 1998, 15(6): 21-24
       (张学元, 马利民, 杜元龙. 咪唑啉酰胺在含CO2溶液中的缓蚀机理 [J].应用化学, 1998, 15(6): 21-24)
[11] Mar'a L, Valdez R, Villamisar W, et al. Computational simulations of the molecular structure and corrosion properties of amidoethyl, aminoethyl and hydroxyethyl imidazolines inhibitors [J]. Corros. Sci., 2006, 48: 4053-4064
[12] Suzuki K. The study of inhibitor for sour gas service [J]. Corrosion, 1982, 7: 384-389
[13] Ramachandran S. Self-assembled monolayer mechanism for corrosion inhibition of iron by imidazolines [J].Langmuir, 1996, 12(26): 6419-6428
[14] Jovancicevic V, Ramachandran S. Inhibition of carbon dioxidecorrosion of mild steel by imidazolines and their precursors [J].Corrosion, 1999, 55(5): 449-455
[15] Yang H Y, Chen J J, Cao C N. Study on corrosion and inhibition on mechanism in H2S aqueous solutions [J]. J. Chin. Soc.Corros. Prot., 2002, 22(3): 148-152
       (杨怀玉,陈家坚,曹楚南. H2S水溶液中的腐蚀与缓蚀作用机理的研究[J]. 中国腐蚀与防护学报,2002, 22(3): 148-152)
[16] Guo X P, Fu C Y.Interaction between inhibitor and CO2corrosion production film [D].Qingdao:Inhibitor Committee of Chinese Corrosion and Protection, 2001: 7-l2
       (郭兴蓬,付朝阳. 缓蚀剂和CO$_2$腐蚀产物膜的相互作用 [D]. 青岛:中国腐蚀与防护学会缓蚀剂专业委员会,2001: 7-12)
[17] Dougherty J A, Stergmann D W. The effects of flow on corrosion inhibitors performance [J]. Mater. Performance, 1996,35(4):47-53
[18] Liu X W,Peng F M,Zheng J S, et al. Study of inhibitor for pipeline in oilfield [J]. Mater. Prot., 2000, 33(8):3-5
       (刘小武, 彭芳明,郑家燊等. 输油管线缓蚀剂的研究 [J]. 材料保护, 2000, 33(8):3-5)
[19] Chert Y, Jepson W P. EIS measurement  for corrosion monitoring under multiphase flow condition [J]. Electrochim. Acta, 1999, 44:4453-4464
[20] Wang H B,Hong T,Jepson W P. Characterization of inhibitor and corrosion product film using electrochemical impedance spectroscopy(EIS) [A]. Corrosion/2001 [C]. Houston,Texas: NACE, 2001: 23
[21] Smart J S. The meaning of the api-rp-14-e formula for erosion corrosion in oil and gas production [J]. Corrosion, 1991, paper 468
[22] Zhao L, Teng H K, Yang Y S. Corrosion inhibition approach of oil production systems in offshore oilfields [J]. Mater. Corros., 2004,55(9): 684-688
[23] Jiang X, Luo S Z, Zheng Y G. Study on inhibitor properties of quaternary alkynoxymethyl amine and imidazoline for N80 seamless steel in 3\% NaCl saturated by CO2 [J]. J. Chin. Soc. Corros. Prot.,2004, 24(1): 10-15
       (蒋秀,骆素珍,郑玉贵. 炔氧甲基季胺盐和咪唑啉对N80在饱和CO2的3\%NaCl溶液中的缓蚀性能研究 [J]. 中国腐蚀与防护学报, 2004, 24(1): 10-15)
[24] Jiang X, Zheng Y G, Ke W. Inhibitor properties of quaternary alkynoxymethyl amine under flowing conditions [J]. J. Chin. Soc. Corros.Prot., 2004, 24(4): 234-239
       (蒋秀,郑玉贵,柯伟. 流动条件下炔氧甲基季铵盐的缓蚀性能研究 [J]. 中国腐蚀与防护学报,2004, 24(4): 234-239)
[25] Cao C N. Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 1994
      (曹楚南. 腐蚀电化学 [M]. 北京:化学工业出版社, 1994 )
[26] Yang H Y, Chen J J. Cao C N. Study on corrosion and inhibition on mechanism in H2S aqueous solutions [J]. J. Chin. Soc. Corros.Prot., 2001,21(6): 321-327
      (杨怀玉,陈家坚,曹楚南. H2S溶液中的腐蚀与缓蚀作用机理的研究 [J].中国腐蚀与防护学报,2001,21(6): 321-327)

[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[7] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[8] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[9] Jianguo LIU,Ge GAO,Yazhou XU,Zili LI,Wanran JI. Corrosion Inhibition Performance of Imidazoline Derivatives[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[10] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[11] Jingling MA, Shuai TONG, Fengzhang REN, Guangxin WANG, Yaqiong LI, Jiuba WEN. Influences of Inhibitor L-Cysteine/zinc Oxide on Electrochemical Performance of 3102 Al-alloy in Alkaline Solution[J]. 中国腐蚀与防护学报, 2018, 38(4): 351-357.
[12] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[13] Shuaihao HAN,Hongyu CEN,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[14] Jingmao ZHAO,Qifeng ZHAO,Riujing JIANG. Relationship between Structure of Imidazoline Derivates with Corrosion Inhibition Performance in CO2/H2S Environment[J]. 中国腐蚀与防护学报, 2017, 37(2): 142-147.
[15] Hongwei LIU,Fuping XIONG,Yalin LV,Chengxuan GE,Hongfang LIU,Yulong HU. CO2 Corrosion Inhibition of Carbon Steel by Dodecylamine under Flow Conditions[J]. 中国腐蚀与防护学报, 2016, 36(6): 645-651.
No Suggested Reading articles found!