Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1390-1398    DOI: 10.11902/1005.4537.2024.391
Current Issue | Archive | Adv Search |
Corrosion Behavior of Low Alloy Steel P110SS in Chloride and Formate Solutions at High Temperature and High CO2 Pressure
LUO Zhu1, LIU Jiale2,3, WEI Anchao1, HUANG Honglin1, LI Xin1, YU Yanzhao2,3(), ZHANG Mengfei2,3
1 Hainan Branch, CNOOC (China) Corporation Limitded, Haikou 570100, China
2 China University of Petroleum (Beijing), Beijing 102249, China
3 Beijing Key Laboratory of Material Failure and Corrosion Protection for Oil and Gas Equipment, Beijing 102249, China
Cite this article: 

LUO Zhu, LIU Jiale, WEI Anchao, HUANG Honglin, LI Xin, YU Yanzhao, ZHANG Mengfei. Corrosion Behavior of Low Alloy Steel P110SS in Chloride and Formate Solutions at High Temperature and High CO2 Pressure. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1390-1398.

Download:  HTML  PDF(22573KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of low alloy steel P110SS in NaCl and HCOOK solutions in high temperature and high-pressure CO2 atmospheres is studied via high temperature and high-pressure autoclave. While the corrosion morphology and corrosion type, the composition and phase constituents of corrosion products were characterized by means of scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), X-ray diffractometer (XRD), and transmission electron microscopy (TEM). The results show that when setting the same CO2 pressure, the corrosion rate of P110SS in HCOOK solution at 150 ℃ is 10.6 times that in NaCl solution and 3.3 times at 180 ℃. There are obvious differences in the corrosion products of P110SS in the two solutions. The final corrosion product formed in NaCl solution is FeCO3, which has a rhombic block crystal morphology, no clear dominant growth direction, and is densely accumulated on the substrate surface. Therefore, it has a good ability to protect the substrate from further corrosion. The final corrosion product formed in the HCOOK solution is FeCO3, but the difference is that its crystal morphology is in the shape of a "flower cluster", in which the "flower branches" are evenly distributed from three "pinnae" growing outward along the "pinnae axis", with dominant growth planes of (018), (116), and (0012). However, the corrosion scale has a loose structure, so the protection is poor and the corrosion rate is high.

Key words:  potassium carbonate      FeCO3 corrosion product      microstructure      dominant growth surface     
Received:  11 September 2024      32134.14.1005.4537.2024.391
ZTFLH:  TG174.1  
Fund: CNOOC Group Company "14th Five-Year" Major Science and Technology Project(KJGG2021-0800)
Corresponding Authors:  YU Yanzhao, E-mail: yuyanzhao0328@126.com.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.391     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1390

Fig.1  Corrosion rates of P110SS steel after immersion for 5 d under the different conditions of solution and temperature
Fig.2  SEM surface images of P110SS steel after 5 d immersion in NaCl solution (a, b) and HCOOK solution (c, d) at 150 ℃ (a, c) and 180 ℃ (b, d)
Fig.3  SEM images of P110SS steel after removal of corrosion products formed during 5 d immersion in NaCl solution (a, b) and HCOOK solution (c, d) at 150 ℃ (a, c) and 180 ℃ (b, d)
Fig.4  CLSM surface images of P110SS steel after removal of corrosion products formed during 5 d immersion in NaCl solution (a, b) and HCOOK solution (c, d) at 150 ℃ (a, c) and 180 ℃ (b, d)
Fig.5  SEM cross-sectional images and EDS element mappings for P110SS steel immersed for 5 d in NaCl solution (a-d) and HCOOK solution (e-h) at 150 ℃ (a, b, e, f) and 180 ℃ (c, d, g, h)
Fig.6  XRD patterns of P110SS steel after 5 d immersion under the different conditions of solution and temperature
Fig.7  TEM images and selected-area diffraction patterns of the corrosion products formed on P110SS steel after 5 d immersion at 150 ℃ in NaCl solution (a, b) and at 180 ℃ in HCOOK solution (c, d)
Fig.8  Schematic diagrams of the microstructures of corrosion product films formed on P110SS steel during immersion in CO2-containing NaCl solution (a) and HCOOK solution (b)
[1] Zhao G X, Yan M L, Lu M X, et al. Advances in research of CO2 corrosion in oil and gas industry [J]. Corros. Prot., 1988, 19: 51
赵国仙, 严密林, 路民旭 等. 石油天然气工业中CO2腐蚀的研究进展 [J]. 腐蚀与防护, 1988, 19: 51
[2] Nešić S. Key issues related to modelling of internal corrosion of oil and gas pipelines-A review [J]. Corros. Sci., 2007, 49: 4308
[3] De Waard C, Milliams D E. Carbonic acid corrosion of steel [J]. Corrosion, 1975, 31: 177
[4] Chen C F. Research on electrochemical behavior and corrosion scale characteristics of CO2 corrosion for tubing and casing steel [D]. Xi'an: Northwestern Polytechnical University, 2002
陈长风. 油套管钢CO2腐蚀电化学行为与腐蚀产物膜特性研究 [D]. 西安: 西北工业大学, 2002
[5] Wan H X, Liu C L, Wang Z A, et al. Corrosion behavior of P110S oil casing steel in sulfur containing environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 371
万红霞, 刘重麟, 王子安 等. P110S油套管在微含硫环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 371
doi: 10.11902/1005.4537.2022.126
[6] Xing X S, Fan B T, Zhu X Y, et al. Corrosion characteristics of P110SS casing steel for ultra-deep well in artificial formation water with low H2S and high CO2 content [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 611
幸雪松, 范白涛, 朱新宇 等. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2023, 43: 611
doi: 10.11902/1005.4537.2022.225
[7] Liu Y, Xu L N, Lu M X, et al. Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt [J]. Appl. Surf. Sci., 2014, 314: 768
[8] Son A J, Kuzlik M S. Corrosion inhibitor for heavy brines [P]. US Pat, 4539122A, 1985
[9] Liu W Y, Shi T H, Li S, et al. Failure analysis of a fracture tubing used in the formate annulus protection fluid [J]. Eng. Fail. Anal., 2019, 95: 248
[10] Liu K B, Zhou W M, Zhi T C, et al. Stress corrosion cracking behavior of super 13Cr stainless steel in CO2-containing CaCl2 completion fluid [J]. Chem. Eng. Oil Gas, 2007, 36: 222
刘克斌, 周伟民, 植田昌克 等. 超级13Cr钢在含CO2的CaCl2完井液中应力腐蚀开裂行为 [J]. 石油与天然气化工, 2007, 36: 222
[11] Yang L T, Zhang J J, Li F, et al. Study on corrosion behavior of P110S steel in CO2-H2S-saturated solution [J]. Int. J. Electrochem. Sci., 2022, 17: 22018
[12] Bungert D, Maikranz S, Sundermann R, et al. The evolution and application of formate brines in high-temperature/high-pressure operations [A]. SPE/IADC Drilling Conference and Exhibition [C]. New Orleans, 2000: SPE-59191-MS
[13] Zang W W, Xu T T, Zhao Z J, et al. Physical and chemical properties of cesium and other formate brines as drilling/completion fluids [J]. Oilfield Chem., 2010, 27: 100
臧伟伟, 徐同台, 赵忠举 等. 甲酸铯及其他甲酸盐水溶液的物理化学特性 [J]. 油田化学, 2010, 27: 100
[14] Zeng Q L. Formate drilling fluid system application [D]. Xi'an: Xi'an Shiyou University, 2010
曾庆林. 甲酸盐钻井液体系的应用 [D]. 西安: 西安石油大学, 2010
[15] Zeng D Z, Chen R, Zhang Z, et al. Research on stress corrosion sensitivity of C110 casing in wellbore protection fluid [J]. Energy Procedia, 2012, 16: 816
[16] Zhu S D, Wei J F, Bai Z Q, et al. Failure analysis of P110 tubing string in the ultra-deep oil well [J]. Eng. Fail. Anal., 2011, 18: 950
[17] Zhu S D, Wei J F, Cai R, et al. Corrosion failure analysis of high strength grade super 13Cr-110 tubing string [J]. Eng. Fail. Anal., 2011, 18: 2222
[18] Yue X Q, Zhang L, Ma L, et al. Influence of a small velocity variation on the evolution of the corrosion products and corrosion behaviour of super 13Cr SS in a geothermal CO2 containing environment [J]. Corros. Sci., 2021, 178: 108983
[19] Zhao Y, Chang L M, Zhang T, et al. Effect of the flow velocity on the corrosion behavior of UNS S41426 stainless steel in the extremely aggressive oilfield environment for the Tarim area [J]. Corrosion, 2020, 76: 654
[20] Sánchez-Tovar R, Montañés M T, García-Antón J. Effect of the micro-plasma arc welding technique on the microstructure and pitting corrosion of AISI 316L stainless steels in heavy LiBr brines [J]. Corros. Sci., 2011, 53: 2598
[21] Mou L M, Bian T T, Zhang S H, et al. Understanding the interaction mechanism of chloride ions and carbon dioxide towards corrosion of 3Cr steel [J]. Vacuum, 2023, 217: 112571
[22] Pfennig A, Wiegand R, Wolf M, et al. Corrosion and corrosion fatigue of AISI 420C (X46Cr13) at 60 ℃ in CO2-saturated artificial geothermal brine [J]. Corros. Sci., 2013, 68: 134
[23] Huang Z J, Wang B, Yang Z W, et al. Study on the corrosion behavior of P110S in high-temperature CaCl2 completion fluid [J]. Mater. Prot., 2021, 54(6): 83
黄知娟, 王 贝, 杨志文 等. P110S在高温CaCl2完井液中的腐蚀规律研究 [J]. 材料保护, 2021, 54(6): 83
[24] Leth-Olsen H. CO2 corrosion of steel in formate brines for well applications [A]. Corrosion 2004 [C]. New Orleans, 2004: 1
[25] Li W L, Zhang H J, Du C C, et al. Effect of CO2 on the corrosion behavior of C110 carbon steel in formate solution environment [J]. Mater. Prot., 2018, 51(10): 47
李渭亮, 张慧娟, 杜春朝 等. CO2渗入对C110管柱在甲酸盐完井液中腐蚀行为的影响 [J]. 材料保护, 2018, 51(10): 47
[26] Zhang Z, Zheng Y S, Li J, et al. Localized corrosion resistance of super 13Cr stainless steel in formate completion fluid containing CO2 [J]. Mater. Prot., 2018, 51(8): 26
张 智, 郑钰山, 李 晶 等. 含CO2甲酸盐完井液中超级13Cr不锈钢的局部腐蚀性能 [J]. 材料保护, 2018, 51(8): 26
[27] Yang X T, Lü X H, Xie J F, et al. Corrosion behavior of high strength 15Cr martensitic stainless steel in organic salt completion fluid [J]. Corros. Prot., 2018, 39: 901
杨向同, 吕祥鸿, 谢俊峰 等. 高强15Cr马氏体不锈钢在有机盐完井液中的腐蚀行为 [J]. 腐蚀与防护, 2018, 39: 901
[28] Zhao G X, Du H B, Qian J, et al. Corrosion behavior of 2507 super duplex stainless in potassium formate completion fluid [J]. Corros. Prot., 2021, 42(10): 54
赵国仙, 杜航波, 钱 炯 等. 2507超级双相不锈钢在甲酸盐完井液中的腐蚀行为 [J]. 腐蚀与防护, 2021, 42(10): 54
[29] Zhao G X, Gao F. Anti-corrosion behavior of TC4 alloy in organic salt completion fluid [J]. Drill. Fluid Completion Fluid, 2020, 37: 264
赵国仙, 高 飞. TC4钛合金在有机盐完井液中的腐蚀性能 [J]. 钻井液与完井液, 2020, 37: 264
[30] Yue X Q, Huang L Y, Qu Z H, et al. Formation and evolution of the corrosion scales on super 13Cr stainless steel in a formate completion fluid with aggressive substances [J]. Front. Mater., 2022, 8: 802136
[31] Sun Q, Chen C F, Zhao X, et al. Ion-selectivity of iron sulfides and their effect on H2S corrosion [J]. Corros. Sci., 2019, 158: 108085
[32] Dong Y G, Chai Z G, Liu Q L, et al. Discussion on corrosion of ground equipment in oil and gas field from carbon dioxide [J]. Inner Mongolia Petrochem. Ind., 2019, 45(2): 65
董艳国, 柴治国, 刘秋兰 等. 二氧化碳对油气田地面设备的腐蚀探讨 [J]. 内蒙古石油化工, 2019, 45(2): 65
[33] Zhu K H, Liu Y, Su N, et al. Behavior pattern and research progress of carbon dioxide corrosion in oil well [J]. Total Corros. Control, 2013, 27(10): 23
朱克华, 刘 云, 苏 娜 等. 油井二氧化碳腐蚀行为规律及研究进展 [J]. 全面腐蚀控制, 2013, 27(10): 23
[34] Liu G S, Wang W J, Zhou P, et al. Corrosion behavior of casing steels 13Cr and N80 during sequestration in an impure carbon dioxide environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1200
刘广胜, 王卫军, 周 佩 等. 含杂CO2封存条件下13Cr和N80套管钢腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1200
doi: 10.11902/1005.4537.2023.322
[35] Li H X, Li D P, Zhang L, et al. Fundamental aspects of the corrosion of N80 steel in a formation water system under high CO2 partial pressure at 100 ℃ [J]. RSC Adv., 2019, 9: 11641
[36] Li X P, Zhao Y, Qi W L, et al. Effect of extremely aggressive environment on the nature of corrosion scales of HP-13Cr stainless steel [J]. Appl. Surf. Sci., 2019, 469: 146
[37] Zhang G A, Cheng Y F. On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production [J]. Corros. Sci., 2009, 51: 87
[38] Dong L J, Zhang X L, Li Y F, et al. Effect of thiosulphate/H2S on crevice corrosion behaviour of P110 carbon steel in CO2-saturated solution [J]. Corros. Eng. Sci. Technol., 2020, 55: 253
[1] TONG Xiangyu, XU Weichen, WANG Xiutong, WANG Youqiang, DUAN Jizhou. Summary on Effect of Weling Techniques on Microstructure and Mechanical Properties of TC4 Ti-alloy Weld Jointis[J]. 中国腐蚀与防护学报, 2025, 45(5): 1161-1174.
[2] LIU Penghe, XUE Lili, XU Likun, XIN Yonglei, GUO Mingshuai, ZHOU Shuai, DUAN Tigang. Effect of Hydrogen Pre-charging for Ti-substrate on Microstructure and Electrochemical Properties of Ti/RuO2-IrO2-TiO2 Anode[J]. 中国腐蚀与防护学报, 2025, 45(5): 1277-1288.
[3] LI Weipeng, LUO Kunjie, WANG Huisheng, CHEN Jiacheng, HAN Yaolei, PANG Xiaolu, PENG Qunjia, QIAO Lijie. Effect of Precipitation on Stress Corrosion Cracking Initiation of Nickel Based 718 Alloy in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2025, 45(4): 947-955.
[4] FAN Jiajun, DONG Lijin, MA Cheng, ZHANG Ziyu, MING Hongliang, WEI Boxin, PENG Qing, WANG Qinying. Research Progress on Hydrogen-assisted Fatigue Crack Growth of Pipeline Steels in Hydrogen-blended Natural Gas Environment[J]. 中国腐蚀与防护学报, 2025, 45(2): 296-306.
[5] YAN Bingchuan, ZENG Yunpeng, ZHANG Ning, SHI Xianbo, YAN Wei. Microbiologically Influenced Corrosion of Cu-bearing Steel Welded Joints for Petroleum Pipes[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[6] LIU Guoqiang, FENG Changjie, XIN Li, MA Tianyu, CHANG Hao, PAN Yuxuan, ZHU Shenglong. Preparation and Microstructure of Diffused Ti-Al-Si Coatings on Ti-6Al-4V Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 69-80.
[7] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[8] CHENG Yonghe, FU Junwei, ZHAO Maomi, SHEN Yunjun. Research Progress on Corrosion Resistance of High-entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[9] ZHAO Qian, ZHANG Jie, MAO Ruirui, MIAO Chunhui, BIAN Yafei, TENG Yue, TANG Wenming. Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[10] ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[11] LIU Jiuyun, DONG Lijin, ZHANG Yan, WANG Qinying, LIU Li. Research Progress on Sulfide Stress Corrosion Cracking of Dissimilar Weld Joints in Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[12] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[13] JIANG Guangrui, LIU Guanghui, SHANG Ting. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of ZnAlMg Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[14] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[15] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
No Suggested Reading articles found!