|
|
Intergranular Corrosion Behavior of Friction Stir Welded Joints of Semi-solid 7075 Al-alloy |
DING Zhichao, ZHANG Shuguo( ), XIAO Xiaochun, WANG Di, LI Wenjie, JIANG Lihong |
School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China |
|
Cite this article:
DING Zhichao, ZHANG Shuguo, XIAO Xiaochun, WANG Di, LI Wenjie, JIANG Lihong. Intergranular Corrosion Behavior of Friction Stir Welded Joints of Semi-solid 7075 Al-alloy. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 1089-1097.
|
Abstract The intergranular corrosion behavior of friction stir welded joints of semi-solid 7075 Al-alloy in solution of 10 mL H2O2 + 57 g NaCl + 1000 mL H2O was assessed by means of immersion test, optical microscope, scanning electron microscope (SEM) and energy spectroscopy (EDS) etc. The results show that the entire welded joint can be differentiated as four zones: the base metal (BM) zone, the heat-affected (HAZ) zone, the thermo-mechanically affected (TMAZ) zone and the nuclear weld (NZ) zone. Among them, the corrosion degree of the weld center (NZ) is the lightest, the heat-affected (HAZ) zone is the most serious; while the corrosion degree of the four zones of the weld joint may be ranked in an order from low to high as follows NZ < BM < TMAZ < HAZ. In general, with the increase of corrosion time, the corrosion forms of every zone of the friction stir welded joint of semi-solid 7075 Al-alloy conform to the same characteristics of pitting corrosion, intergranular corrosion and spalling corrosion. The difference of corrosion performance of different zones of semi-solid 7075 Al-alloy friction stir welded joints may be attributed to the different microstructure and distribution of second-phase particles in various zones of the joint.
|
Received: 09 October 2024
32134.14.1005.4537.2024.328
|
|
Fund: National Natural Science Foundation of China(52105451);National Natural Science Foundation of China(52465045) |
Corresponding Authors:
ZHANG Shuguo, E-mail: zsg89@nchu.edu.cn
|
[1] |
Zeng Y, Yin Z M, Pan Q L, et al. Present research and developing trends of ultra high strength aluminum alloys [J]. J. Central South Univ. (Sci. Technol.), 2002, 33: 592
|
|
(曾 渝, 尹志民, 潘青林 等. 超高强铝合金的研究现状及发展趋势 [J]. 中南工业大学学报(自然科学版), 2002, 33: 592)
|
[2] |
Wu F M, Wang J T, Zhang Y K, et al. Research of electrochemical corrosion performance of aluminum alloy offshore drill served in deep ocean [J]. Mech. Electr. Eng. Technol., 2021, 50(2): 30
|
|
(吴凤民, 王江涛, 张永康 等. 深海用铝合金海工钻杆抗电化学腐蚀性能的研究 [J]. 机电工程技术, 2021, 50(2): 30)
|
[3] |
Ji H. Development and application of 7000 high strength aluminum alloys on airplane [J]. Aeronaut. Sci. Technol., 2015, 26(6): 75
|
|
(姬 浩. 7000系高强铝合金的发展及其在飞机上的应用 [J]. 航空科学技术, 2015, 26(6): 75)
|
[4] |
Yuan S J. Development and perspectives on plastic forming industry of China in the new century [J]. Forging Stamp. Technol., 2018, 43(7): 12
|
|
(苑世剑. 新世纪中国塑性加工行业的发展与展望 [J]. 锻压技术, 2018, 43(7): 12)
|
[5] |
Pan S, Fu Y, Wang Y, et al. Research progress of Al alloy semisolid forming technology [J]. Rare Met. Mater. Eng., 2022, 51: 3110
|
|
(潘 帅, 付 莹, 王 玉 等. 铝合金半固态成形技术研究进展 [J]. 稀有金属材料与工程, 2022, 51: 3110)
|
[6] |
Lashkari O, Ghomashchi R. The implication of rheology in semi-solid metal processes: an overview [J]. J. Mater. Process. Technol., 2007, 182: 229
|
[7] |
He J J, Li Y B, Li S H, et al. Microstructure and mechanical properties of welded Joint of 7075 aluminum alloy by FSW [J]. Hot Work. Technol., 2011, 40(19): 142
|
|
(何建军, 李玉斌, 李盛和 等. 7075铝合金搅拌摩擦焊接头组织与力学性能研究 [J]. 热加工工艺, 2011, 40(19): 142)
|
[8] |
Liu D H, Liu T, Qiu Q R. Effect of age forming on microstructure and mechanical properties of welded joint of 7075 aluminum alloy [J]. J. Plast. Eng., 2020, 27(1): 75
|
|
(刘大海, 刘 涛, 邱全荣. 时效成形对7075铝合金焊接接头显微组织与力学性能的影响 [J]. 塑性工程学报, 2020, 27(1): 75)
doi: 10.3969/j.issn.1007-2012.2020.01.010
|
[9] |
Wang B C, Wang Y Q. Aluminum alloy friction stir welding process and electrochemical corrosion performance analysis of welded joints [J]. Woodwork. Mach., 2020, (4): 25
|
|
(王柏苍, 王以奇. 铝合金搅拌摩擦焊工艺及焊接接头电化学腐蚀性能分析 [J]. 木工机床, 2020, (4): 25)
|
[10] |
Geng X W. Study on the corrosion behavior of friction stir welded 6061Al alloy [D]. Shenyang: Shenyang University, 2008
|
|
(耿学文. 6061Al搅拌摩擦焊焊缝腐蚀研究 [D]. 沈阳: 沈阳大学, 2008)
|
[11] |
Bai L Y, Shao F, Ma Q N, et al. Corrosion evolution behavior of 7075 aluminum alloy FSW welded joints in seawater [J]. Corros. Prot., 2023, 44(7): 28
|
|
(白林越, 邵 飞, 马青娜 等. 7075铝合金FSW焊接接头在海水中的腐蚀演化行为 [J]. 腐蚀与防护, 2023, 44(7): 28)
|
[12] |
Zhu Y L, Hu G Z, Xu X L, et al. Comparison of corrosion behaviors of semi-solid and as-cast 7A04 aluminum alloy [J]. Chin. J. Nonferrous Met., 2015, 25: 3293
|
|
(朱艳丽, 胡光忠, 徐晓龙 等. 半固态与铸态7A04铝合金腐蚀行为的对比 [J]. 中国有色金属学报, 2015, 25: 3293)
|
[13] |
Method for determination of intergranular corrosion of aluminum alloys-China Knowledge [EB/OL]. 2024-07-12.
|
|
(铝合金晶间腐蚀测定方法-中国知网[EB/OL]. 2024-07-12.)
|
[14] |
Zhang S G. Study on technology of the Rheo-squeeze casting process for aluminum alloys [D]. Nanchang: Nanchang University, 2018
|
|
(张树国. 铝合金流变挤压铸造成形技术基础研究 [D]. 南昌: 南昌大学, 2018)
|
[15] |
Bousquet E, Poulon-Quintin A, Puiggali M, et al. Relationship between microstructure, microhardness and corrosion sensitivity of an AA 2024-T3 friction stir welded joint [J]. Corros. Sci., 2011, 53: 3026
|
[16] |
Chen Z Z, Fan J J. Study on salt-spray pre-corrosion fatigue properties of 7050 aluminum alloy friction stir welded joints [J]. Hot Work. Technol., 2016, 45(15): 220
|
|
(陈振中, 樊建军. 7050铝合金搅拌摩擦焊接头盐雾预腐蚀疲劳性能研究 [J]. 热加工工艺, 2016, 45(15): 220)
|
[17] |
Li C X, Xu J, Li J F, et al. Comparison of mechanical properties and corrosion behaviors of 7075 aluminum alloy at various aging systems [J]. Alumin. Fabricat., 2009, (5): 10
|
|
(李朝兴, 徐 静, 李劲风 等. 不同时效制度7075铝合金力学性能及腐蚀性能综合比较研究 [J]. 铝加工, 2009, (5): 10)
|
[18] |
Zhang X X, Zhou X R, Hashimoto T, et al. Localized corrosion in AA2024-T351 aluminium alloy: transition from intergranular corrosion to crystallographic pitting [J]. Mater. Charact., 2017, 130: 230
|
[19] |
El-Amoush A S. Intergranular corrosion behavior of the 7075-T6 aluminum alloy under different annealing conditions [J]. Mater. Chem. Phys., 2011, 126: 607
|
[20] |
Jiang Y, Zhu H, Liu J L, et al. Influence of 7075 aluminum alloy FSW process on precipitation behavior of precipitated phases for joints [J]. Chin. J. Nonferrous Met., 2018, 28: 2191
|
|
(姜 月, 朱 浩, 刘家伦 等. 7075铝合金搅拌摩擦焊工艺对接头沉淀相析出行为影响 [J]. 中国有色金属学报, 2018, 28: 2191)
|
[21] |
Wang B X T, Xue K M, Yan S L, et al. Corrosion behavior of a new ultra high strength aluminum alloy due to high energy defects and secondary phases [J]. Chin. J. Nonferrous Met., 2019, 29: 693
|
|
(王薄笑天, 薛克敏, 严思梁 等. 高能缺陷和第二相对新型超高强铝合金腐蚀行为的影响 [J]. 中国有色金属学报, 2019, 29: 693)
|
[22] |
Liu D Q. Investigation of the corrosion behavior of friction stir welded joints in 20mm thick 7075 aluminum alloy [D]. Nanchang: Nanchang Hangkong University, 2016
|
|
(刘德强. 7075铝合金厚板搅拌摩擦焊接头腐蚀行为研究 [D]. 南昌: 南昌航空大学, 2016)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|