|
|
Research Progress of Microbial Corrosion of Metallic Materials in Marine Environment |
WANG Yuhan1, LI Jun1, LIU Hengwei2, XU Nan2, LIU Jie1, CHEN Xu1( ) |
1.College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China 2.Applied Technology College, Dalian Ocean University, Dalian 116300, China |
|
Cite this article:
WANG Yuhan, LI Jun, LIU Hengwei, XU Nan, LIU Jie, CHEN Xu. Research Progress of Microbial Corrosion of Metallic Materials in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 577-588.
|
Abstract Corrosion of metallic materials caused by microorganisms in marine environment has been the focus of research and attention. There exist many kinds of microorganisms in marine environment, and the interaction between microorganisms has different influence on corrosion. The corrosion mechanism of mixed microorganisms is often different from that of a single microorganism, and it is difficult to fully explain the actual corrosion situation with the corrosion process of a single microorganism. In-depth study on the synergistic corrosion of metallic materials by different microorganisms has become an important direction in the field of marine microbial corrosion. This paper summarizes the corrosion mechanism of several typical marine bacteria such as sulfate reducing bacteria (SRB), nitrate reducing bacteria (NRB) and iron oxidizing bacteria (IOB) in marine environment and the relevant research progress on these bacteria induced corrosion of metallic materials. The synergistic or antagonistic effects of SRB on the corrosion of metallic materials when it coexists with other microorganisms were comprehensively reviewed, and the different effects of iron oxidizing bacteria (IOB) and nitrate reducing bacteria (NRB) on the corrosion of metallic materials when they coexist with other microorganisms were also summarized in detail. Finally, the direction and suggestions for future research on the microbial corrosion of metallic materials in marine environment were put forward. It aims to provide new inspiration and direction for the research work in this field, and help researchers to better grasp the nature of microbial corrosion, so as to develop more effective anti-corrosion measures.
|
Received: 03 July 2024
32134.14.1005.4537.2024.195
|
|
Fund: Fundamental Research Funds of Liaoning Department of Education for the Universities(LJ212410148059) |
Corresponding Authors:
CHEN Xu, E-mail: chenxu@lnpu.edu.cn
|
[1] |
Li Y C, Xie F, Li J, et al. Study of corrosion behavior of X52 steel in marine environment [J]. J. Liaoning Univ. Pet. Chem. Technol., 2022, 42(5): 26
|
|
李翌晨, 谢 飞, 李 健 等. 海洋环境下X52管线钢的腐蚀行为研究 [J]. 辽宁石油化工大学学报, 2022, 42(5): 26
|
[2] |
Chen W, Liu H F, Wu G Y, et al. Corrosion behavior and mechanism of N80 steel caused by sulfate reducing bacteria in CO2-saturated shale gas field produced water at 60 ℃ [J]. Int. J. Electrochem. Sci., 2024, 19: 100418
|
[3] |
Wang T. Electrochemical study of microbiologically influenced corrosion on copper- nickel alloy in marine environment [D]. Harbin: Harbin University of Science and Technology, 2009
|
|
王 涛. 新型铜镍合金海水微生物腐蚀的电化学研究 [D]. 哈尔滨: 哈尔滨理工大学, 2009
|
[4] |
Wang H Y, Wu M, Xie F, et al. Effect of external magnetic field on microbial corrosion in oil and gas pipeline [J]. J. Liaoning Univ. Pet. Chem. Technol., 2016, 36(4): 29
|
|
王海燕, 吴 明, 谢 飞 等. 外加磁场对油气管线微生物腐蚀的影响 [J]. 辽宁石油化工大学学报, 2016, 36(4): 29
|
[5] |
Zuo R J. Biofilms: strategies for metal corrosion inhibition employing microorganisms [J]. Appl. Microbiol. Biotechnol., 2007, 76: 1245
pmid: 17701408
|
[6] |
Liu P, Zhang H T, Fan Y Q, et al. Microbially influenced corrosion of steel in marine environments: a review from mechanisms to prevention [J]. Microorganisms, 2023, 11: 2299
|
[7] |
Zhang D, Wu J J. Research progress on the mechanisms of microbiologically influenced corrosion in marine environment [J]. Oceanol. Limnol. Sin., 2020, 51: 821
|
|
张 盾, 吴佳佳. 海洋环境微生物腐蚀机理研究进展 [J]. 海洋与湖沼, 2020, 51: 821
|
[8] |
Cao P, Zhou T T, Bai X Q, et al. Research progress on corrosion and protection in deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2015, 35: 12
|
|
曹 攀, 周婷婷, 白秀琴 等. 深海环境中的材料腐蚀与防护研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 12
|
[9] |
Sun C, Han E-H, Wang X. Effects of srb on corrosion of carbon steel in seamud [J]. Corros. Sci. Prot. Technol., 2003, 15: 104
|
|
孙 成, 韩恩厚, 王 旭. 海泥中硫酸盐还原菌对碳钢腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2003, 15: 104
|
[10] |
Zhao X, Duan J, Hou B, et al. Corrosion of mild steel in sea mud containing sulphate reducing bacteria [J]. Can. Metall. Quart., 2014, 53: 450
|
[11] |
Huang L, Wang Q. Experimental research on microbial corrosion of Q235 steel in insimulated seawater solution [J]. Total Corros. Control, 2017, 31(5): 53
|
|
黄 璐, 王 乾. 海水模拟溶液中Q235钢微生物腐蚀规律的实验研究 [J]. 全面腐蚀控制, 2017, 31(5): 53
|
[12] |
Li X, Chen X, Song W Q, et al. Effect of pH value on microbial corrosion behavior of X70 steel in a sea mud extract simulated solution [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 565
|
|
李 鑫, 陈 旭, 宋武琦 等. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2018, 38: 565
|
[13] |
Wan Y, Zhang D, Liu H Q, et al. Influence of sulphate-reducing bacteria on environmental parameters and marine corrosion behavior of Q235 steel in aerobic conditions [J]. Electrochim. Acta, 2010, 55: 1528
|
[14] |
Li J M, Wang D, Jiang J T, et al. Corrosion behavior of X70 steel in South China sea environment [J]. J. Liaoning Univ. Pet. Chem. Technol., 2022, 42(6): 49
|
|
李佳蔓, 王 丹, 姜锦涛 等. X70管线钢在南海环境下的腐蚀行为研究 [J]. 辽宁石油化工大学学报, 2022, 42(6): 49
|
[15] |
Brioukhanov A L, Netrusov A I. Aerotolerance of strictly anaerobic microorganisms and factors of defense against oxidative stress: a review [J]. Appl. Biochem. Microbiol., 2007, 43: 567
|
[16] |
Chi P J, Yang J, Sun Y H X, et al. Research progress in sulfate-reducing bacteria corrosion of metal materials [J]. Liaoning. Chem. Ind., 2023, 52: 1027
|
|
池坪礁, 杨 杰, 孙宇海漩 等. 金属材料的硫酸盐还原菌腐蚀研究进展 [J]. 辽宁化工, 2023, 52: 1027
|
[17] |
Von Wolzogen Kuehr C A H, van der Vlugt L S. The graphitization of cast iron as an electrobiochemical process in anaerobic soils [J]. Water, 1934, 18: 53
|
[18] |
Liu T, Liu H, Hu Y, et al. Growth characteristics of thermophile sulfate-reducing bacteria and its effect on carbon steel [J]. Mater. Corros., 2009, 60: 218
|
[19] |
Gu T Y. New understandings of biocorrosion mechanisms and their classifications [J]. J. Microb. Biochem. Technol., 2012, 4: iii
|
[20] |
Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiol. China, 2017, 44: 1699
|
|
黄 烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展 [J]. 微生物学通报, 2017, 44: 1699
|
[21] |
Starkey R L. Interrelations between microorganisms and plant roots in the rhizosphere [J]. Bacteriol. Rev., 1958, 22: 154
doi: 10.1128/br.22.3.154-172.1958
pmid: 13572279
|
[22] |
Venzlaff H, Enning D, Srinivasan J, et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria [J]. Corros. Sci., 2013, 66: 88
|
[23] |
Dou W W, Liu J L, Cai W Z, et al. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation [J]. Corros. Sci., 2019, 150: 258
|
[24] |
Xu Z X, Zhang F, Zhang T S, et al. Unique corrosion reinforcement mechanism of pipeline oil sludge with sulfate-reducing bacteria on X60 steel and the targeted long-term inhibition of dazomet delivery [J]. Corros. Sci., 2024, 228: 111792
|
[25] |
Li Y C, Xu D K, Chen C F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review [J]. J. Mater. Sci. Technol., 2018, 34: 1713
doi: 10.1016/j.jmst.2018.02.023
|
[26] |
Alrammah F, Xu L J, Patel N, et al. Conductive magnetic nanowires accelerated electron transfer between C1020 carbon steel and Desulfovibrio vulgaris biofilm [J]. Sci. Total Environ., 2024, 925: 171763
|
[27] |
Gu T Y, Xu D K. Demystifying MIC mechanisms [A]. NACE CORROSION [C]. Houston, 2010
|
[28] |
Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeter. Biodegr., 2014, 91: 74
|
[29] |
Zhang T S, Xu Z X, Wan H H, et al. Dual corrosion promotion of pipeline steel in sea mud induced by sulfate reducing bacteria: bacteria concentration cell and electronic conduction of the biofilms covered sand grains [J]. Corros. Sci., 2024, 232: 112005
|
[30] |
Li Y F, Ning C Y. Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling [J]. Bioact. Mater., 2019, 4: 189
doi: 10.1016/j.bioactmat.2019.04.003
pmid: 31192994
|
[31] |
Zhou X B, Wang Q, Wang X K, et al. Study on corrosion behavior of X80 pipeline steel by sulfate-reducing bacteria in ocean tidal zone [A]. Abstract Collection of Papers from the 11th National Conference on Corrosion and Protection [C]. Shenyang, 2021: 782
|
|
周小包, 王 琴, 王煊凯 等. 海洋潮汐区X80管线钢硫酸盐还原菌腐蚀行为研究 [A]. 第十一届全国腐蚀与防护大会论文摘要集 [C]. 沈阳, 2021: 782
|
[32] |
Dong X C, Zhai X F, Yang J, et al. Two metabolic stages of SRB strain Desulfovibrio bizertensis affecting corrosion mechanism of carbon steel Q235 [J]. Corros. Commun., 2023, 10: 56
|
[33] |
Liu H W, Chen C Y, Asif M, et al. Mechanistic investigations of corrosion and localized corrosion of X80 steel in seawater comprising sulfate-reducing bacteria under continuous carbon starvation [J]. Corros. Commun., 2022, 8: 70
|
[34] |
Zulkafli R, Othman N K, Yaakob N. Localised corrosion of API 5L X65 carbon steel in marine environments: the role of sulfate-reducing bacteria (SRB) [J]. J. Bio Tribo Corros., 2023, 9: 12
|
[35] |
Chen X, Xiao C C, Wang X T, et al. Corrosion behaviors of 2205 duplex stainless steel in biotic and abiotic NaCl solutions [J]. Constr. Build. Mater., 2022, 342: 127699
|
[36] |
Zhao Z L, Xiang J, Tan Y, et al. Preparation of superhydrophobic coating on 5083 aluminum alloy for corrosion protection in simulated marine environment containing SRB [J]. Phys. Met. Metallogr., 2021, 122: 1581
|
[37] |
de Andrade J S, Vieira M R S, Oliveira S H, et al. Study of microbiologically induced corrosion of 5052 aluminum alloy by sulfate-reducing bacteria in seawater [J]. Mater. Chem. Phys., 2020, 241: 122296
|
[38] |
Wang D, Yang C T, Zheng B R, et al. Microbiologically influenced corrosion of CoCrFeMnNi high entropy alloy by sulfate-reducing bacterium Desulfovibrio vulgaris [J]. Corros. Sci., 2023, 223: 111429
|
[39] |
Song Y, Chen S G. Effect of temperature on corrosion behavior of copper-nickel alloys by sulphate-reducing bacteria in anaerobic environment [J]. Surf. Technol., 2022, 51(3): 95
|
|
宋 翼, 陈守刚. 温度对厌氧环境中硫酸盐还原菌所致铜镍合金腐蚀行为的影响 [J]. 表面技术, 2022, 51(3): 95
|
[40] |
Parthipan P, Cheng L, Dhandapani P, et al. Metagenomics diversity analysis of sulfate-reducing bacteria and their impact on biocorrosion and mitigation approach using an organometallic inhibitor [J]. Sci. Total Environ., 2022, 856: 159203
|
[41] |
Gao P, Zhang X T, Huang X M, et al. Genomic insight of sulfate reducing bacterial genus Desulfofaba reveals their metabolic versatility in biogeochemical cycling [J]. BMC Genomics, 2023, 24: 209
|
[42] |
Jia R, Yang D Q, Xu J, et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation [J]. Corros. Sci., 2017, 127: 1
|
[43] |
Liu B, Fan E D, Jia J H, et al. Corrosion mechanism of nitrate reducing bacteria on X80 steel correlated to its intermediate metabolite nitrite [J]. Constr. Build. Mater., 2021, 303: 124454
|
[44] |
Wang Q. Studies on luminescence characteristics, bacteriostatic evaluation, and exploration of biofilm formation mechanism of Lux-tagged recombinant luminescent Pseudomonas aeruginosa [D]. Yangling: Northwest A&F University, 2020
|
|
王 綪. LuX基因重组铜绿假单胞菌的发光特性、抑菌评估和生物膜形成机理探究 [D]. 杨凌: 西北农林科技大学, 2020
|
[45] |
Kannan K P, Gunasekaran V, Sreenivasan P, et al. Recent updates and feasibility of nanodrugs in the prevention and eradication of dental biofilm and its associated pathogens—a review [J]. J. Dent., 2024, 143: 104888
|
[46] |
Lu S H, He Y, Xu R C, et al. Inhibition of microbial extracellular electron transfer corrosion of marine structural steel with multiple alloy elements [J]. Bioelectrochemistry, 2023, 151: 108377
|
[47] |
Pedersen A, Hermansson M. Inhibition of metal corrosion by bacteria [J]. Biofouling, 1991, 3: 1
|
[48] |
Li H B, Zhou E Z, Ren Y B, et al. Investigation of microbiologically influenced corrosion of high nitrogen nickel-free stainless steel by Pseudomonas aeruginosa [J]. Corros. Sci., 2016, 111: 811
|
[49] |
Huang Y, Zhou E Z, Jiang C Y, et al. Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa [J]. Electrochem. Commun., 2018, 94: 9
|
[50] |
Liu D, Yang H Y, Li J H, et al. Electron transfer mediator PCN secreted by aerobic marine Pseudomonas aeruginosa accelerates microbiologically influenced corrosion of TC4 titanium alloy [J]. J. Mater. Sci. Technol., 2021, 79: 101
|
[51] |
Pérez-García J A, Bacame-Valenzuela F J, Manríquez J, et al. Electrochemical analysis of extracellular electron transfer process of Pseudomonas aeruginosa NEJ07R using pyocyanin on a carbon electrode [J]. J. Environ. Chem. Eng., 2023, 11: 110708
|
[52] |
Lu S H, Zhu H X, Xue N T, et al. Acceleration mechanism of riboflavin on Fe0-to-microbe electron transfer in corrosion of EH36 steel by Pseudomonas aeruginosa [J]. Sci. Total Environ., 2024, 939: 173613
|
[53] |
Pu Y, Hou S, Chen S G, et al. The combined effect of carbon starvation and exogenous riboflavin accelerated the Pseudomonas aeruginosa-induced nickel corrosion [J]. Bioelectrochemistry, 2024, 157: 108679
|
[54] |
Lou Y T, Dai C D, Chang W W, et al. Microbiologically influenced corrosion of Fecocrnimo0.1 high-entropy alloys by marine Pseudomonas aeruginosa [J]. Corros. Sci., 2020, 165: 108390
|
[55] |
Liu Y Z. Study of the corrosion behaviour of 2205 duplex stainless steel in the environment containing pseudomona saeruginosa [D]. Harbin: Harbin Engineering University, 2017
|
|
刘玉芝. 2205双相不锈钢在含铜绿假单胞菌环境下的腐蚀行为研究 [D]. 哈尔滨: 哈尔滨工程大学, 2017
|
[56] |
Li C, Wu J J, Zhang D, et al. Effects of Pseudomonas aeruginosa on EH40 steel corrosion in the simulated tidal zone [J]. Water Res., 2023, 232: 119708
|
[57] |
Xu D K, Li Y C, Song F M, et al. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis [J]. Corros. Sci., 2013, 77: 385
|
[58] |
Li J, Du C W, Liu Z Y, et al. Electrochemical studies of microbiologically influenced corrosion of X80 steel by nitrate-reducing Bacillus licheniformis under anaerobic conditions [J]. J. Mater. Sci. Technol., 2022, 118: 208
|
[59] |
Liu B, Sun M H, Lu F Y, et al. Study of biofilm-influenced corrosion on X80 pipeline steel by a nitrate-reducing bacterium, Bacillus cereus, in artificial Beijing soil [J]. Colloid. Surf., 2021, 197B: 111356
|
[60] |
Usher K M, Kaksonen A H, Bouquet D, et al. The role of bacterial communities and carbon dioxide on the corrosion of steel [J]. Corros. Sci., 2015, 98: 354
|
[61] |
Liu H W, Gu T Y, Lv Y L, et al. Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water [J]. Corros. Sci., 2017, 117: 24
|
[62] |
Sachan R, Singh A K, Negi Y S. Study of microbially influenced corrosion in the presence of iron-oxidizing bacteria (Strain DASEWM2) [J]. J. Bio Tribo Corros., 2020, 6: 109
|
[63] |
Ababaf A N, Jafari E. Study of microbiologically influenced corrosion of the welded stainless steel 316L [J]. J. Mater. Eng. Perform., 2023, 32: 8162
|
[64] |
Li Z X, Lv M Y, Du M. Effect of combined potential polarization on corrosion of X65 steel in seawater inoculated with iron oxiding bacteria [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 211
|
|
李振欣, 吕美英, 杜 敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 211
doi: 10.11902/1005.4537.2021.106
|
[65] |
Zhang L, Yu X, Wu Y L, et al. Galvanic corrosion of 20 carbon steel in simulated oilfield produced water containing iron-oxidizing bacteria [J]. Electropl. Finish., 2023, 42(10): 1
|
|
张 丽, 于 鑫, 吴云龙 等. 铁氧化菌对20钢在模拟油田采出液中电偶腐蚀的影响 [J]. 电镀与涂饰, 2023, 42(10): 1
|
[66] |
Liang J H, Zhang J L. Discussion on corrosion mechanism and protection measures of water injection pipeline [J]. China Pet. Chem. Stand. Qual., 2023, 43(20): 32
|
|
梁建宏, 张佳龙. 浅谈注水管道腐蚀机理与防护措施 [J]. 中国石油和化工标准与质量, 2023, 43(20): 32
|
[67] |
Zhou X, Qi Y M. Corrosion failure analysis of J55 tubing thread fastener for an electric pump well in an oil field [J]. Bao-Steel Technol., 2021, (2): 54
|
|
周 雄, 齐亚猛. 某油田电泵井J55油管螺纹丝扣腐蚀失效分析 [J]. 宝钢技术, 2021, (2): 54
|
[68] |
Huang H W. Experimental study on MIC (SRB/TGB) of oil pipeline steels [D]. Beijing: China University of Petroleum (Beijing), 2020
|
|
黄怀炜. 油田集输管线微生物(SRB/TGB)腐蚀实验研究 [D]. 北京: 中国石油大学(北京), 2020
|
[69] |
Tian X K. Study on the effect of symbiosis of sulfate reducing bacteria and total general bacteria on microbiologically influenced corrosion mechanism [D]. Beijing: China University of Petroleum (Beijing), 2020
|
|
田宪凯. 硫酸盐还原菌与腐生菌共生对碳钢微生物腐蚀机制的影响研究 [D]. 北京: 中国石油大学(北京), 2020
|
[70] |
Batmanghelich F, Li L, Seo Y. Influence of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron [J]. Corros. Sci., 2017, 121: 94
|
[71] |
Qiu L N, Zhao D D, Zheng S J, et al. Inhibition effect of Pseudomonas stutzeri on the corrosion of X70 pipeline steel caused by sulfate-reducing bacteria [J]. Materials, 2023, 16: 2896
|
[72] |
Chen J N, Wu J J, Wang P, et al. Effect of Desulfovibrio sp. and Vibrio alginolyticus on corrosion behavior of 907 steel in seawater [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 402
|
|
陈菊娜, 吴佳佳, 王 鹏 等. 脱硫弧菌和溶藻弧菌对船体结构材料907钢海水腐蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2017, 37: 402
doi: 10.11902/1005.4537.2017.024
|
[73] |
Guan J. Distribution and interaction of sulfate-reducing prokaryotes and nitrate-reducing prokaryotes in petroleum reservoirs [D]. Shanghai: East China University of Science and Technology, 2013
|
|
管 婧. 油藏环境硫酸盐还原菌和硝酸盐还原菌的分布及相互作用研究 [D]. 上海: 华东理工大学, 2013
|
[74] |
Gu C X, Yu Y, Ji G J, et al. Corrosion behavior of 304 stainless steel under the combination action of mixed bacteria [J]. Ship Eng., 2011, 33(4): 100
|
|
顾彩香, 于 阳, 吉桂军 等. 304不锈钢在混合菌种共同作用下的腐蚀行为 [J]. 船舶工程, 2011, 33(4): 100
|
[75] |
Kalajahi S T, Rasekh B, Yazdian F, et al. Corrosion behaviour of X60 steel in the presence of sulphate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) in seawater [J]. Corros. Eng. Sci. Technol., 2021, 56: 543
|
[76] |
Zhao T, He L J, Qiu Z H, et al. Synergistic effect between sulfate-reducing bacteria and shewanella algae on corrosion behavior of 321 stainless steel [J]. J. Mater. Res. Technol., 2023, 26: 4906
|
[77] |
Di X J, Pan H D, Yan M C, et al. Microbial corrosion of X60 pipeline steel in groundwater containing sulfate-reducing bacteria/iron-oxidizing bacteria mixed colonies [J]. J. Mater. Eng. Perform., 2023, doi: 10.1007/s11665-023-08801-9
|
[78] |
Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100: 484
|
[79] |
Zhang H Y, Tian Y M, Kang M X, et al. Electrochemical mechanism of 317L stainless steel under biofilms with coexistence of iron-oxidizing bacteria and sulfatereducing bacteria [J]. Int. J. Electrochem. Sci., 2019, 14: 10139
|
[80] |
Wang J, Lv M Y, Du M, et al. Effects of cathodic polarization on X65 steel inhibition behavior and mechanism of mixed microorganisms induced corrosion in seawater [J]. Corros. Sci., 2022, 208: 110670
|
[81] |
Xi G F, Zhao X D, Wang S, et al. Synergistic effect between sulfate-reducing bacteria and pseudomonas aeruginosa on corrosion behavior of Q235 steel [J]. Int. J. Electrochem. Sci., 2020, 15: 361
|
[82] |
Cai D L, Wu J Y, Chai K. Microbiologically influenced corrosion behavior of carbon steel in the presence of marine bacteria pseudomonas sp. and vibrio sp [J]. ACS Omega, 2021, 6: 3780
|
[83] |
Zhou X B, Wang Q, Su H, et al. Marine tidal corrosion of X80 pipeline steel under federative action of pseudomonas sp. and Desulfovibrio desulfuricans [J]. Int. Biodeter. Biodegr., 2024, 187: 105732
|
[84] |
Zhao X D, Yan C M, Shao J, et al. Influence of Pseudomonas aeruginosa and sulfate-reducing bacteria composite on the corrosion behavior of brass [J]. Int. J. Electrochem. Sci., 2019, 14: 6468
|
[85] |
Liu D, Hu Z S, Li M K, et al. Synergistic effect on corrosion behavior of X80 steel influenced by Pseudomonas aeruginosa and Acetobacter aceti [J]. Sep. Purif. Technol., 2024, 351: 128135
|
[86] |
Jin Y T, Li Z, Zhou E Z, et al. Sharing riboflavin as an electron shuttle enhances the corrosivity of a mixed consortium of shewanella oneidensis and bacillus licheniformis against 316l stainless steel [J]. Electrochim. Acta, 2019, 316: 93
|
[87] |
Du J, Li S M, Liu J H, et al. Corrosion behavior of steel Q235 co-influenced by Thiobacillus thiooxidans and Bacillus [J]. J. Beijing Univ. Aeronaut. Astronaut., 2014, 40: 31
|
|
杜 娟, 李松梅, 刘建华 等. 氧化硫硫杆菌和芽孢杆菌协作下Q235钢腐蚀行为 [J]. 北京航空航天大学学报, 2014, 40: 31
|
[88] |
Li S M, Wang Y Q, Liu J H, et al. Synergism effect of thiobacillus ferrooxidans and thiobacillus thiooxidan on the corrosion behavior of steel Q235 [J]. J. Chin. Soc. Corros. Prot., 2009, 29: 182
|
|
李松梅, 王彦卿, 刘建华 等. 氧化亚铁硫杆菌和氧化硫硫杆菌的协同作用对Q235钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2009, 29: 182
|
[89] |
Moradi M, Yang Y, Xu D K, et al. Interspecies interactions of Vibrio azureus and Jeotgalibacillus alkaliphilus on corrosion of duplex stainless steel [J]. Int. Biodeter. Biodegr., 2021, 160: 105212
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|