Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (3): 631-642    DOI: 10.11902/1005.4537.2024.191
Current Issue | Archive | Adv Search |
Effect of Aspergillus Aculeatus on Corrosion Behavior of 5A02 Al-alloy in Coastal Atmospheric Environment of Hainan Island
SONG Xiaowen1, BAI Miaomiao2, CHEN Nana1, GAO Yihui3, FENG Yali1, LIU Qianqian1, ZHANG Yaoyao4, LU Lin1, WU Junsheng1, XIAO Kui1()
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Technical Center of Guangzhou Automobile Parts Co., Ltd., Guangzhou 510050, China
3.Twentieth Research Institute of China Electronics Technology Corporation, Xi'an 710068, China
4.School of Life Sciences, Central China Normal University, Wuhan 430079, China
Cite this article: 

SONG Xiaowen, BAI Miaomiao, CHEN Nana, GAO Yihui, FENG Yali, LIU Qianqian, ZHANG Yaoyao, LU Lin, WU Junsheng, XIAO Kui. Effect of Aspergillus Aculeatus on Corrosion Behavior of 5A02 Al-alloy in Coastal Atmospheric Environment of Hainan Island. Journal of Chinese Society for Corrosion and protection, 2025, 45(3): 631-642.

Download:  HTML  PDF(33456KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To study the influence of Aspergillus aculeatus on the corrosion behavior of Al-alloys, the single colony of Aspergillus aculeatus was isolated and screened from the petri dishes exposed to the coastal atmospheric environment of Hainan Island. The diluted spore suspension of Aspergillus aculeatus with concentration of 1 × 105 /mL was sprayed on the surface of 5A02 Al-alloy samples as groups inoculated with fungi, and sterile control groups were also set up, thereafter, which all placed in a 30 ℃ incubator for selected period of time, while the pH and acid concentration of the bacterial solution were measured intermittently. The test samples were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) in terms of their surface morphology and composition, and the growth of fungi was also observed. The corrosion potential of the Al-alloys surface under the action of Aspergillus aculeatus for different time were analyzed by electrochemical workstation and scanning Kelvin probe (SKP). Results indicated that Aspergillus aculeatus caused localized corrosion of the Al-alloy samples, their corrosion products mainly composed of AlO(OH), Al2O3, and MgO. The metabolic activities of Aspergillus aculeatus produced various organic acids, primarily oxalic acid, leading to a trend of decreasing and then increasing in the surrounding pH, thereby promoting the corrosion of the Al-alloy. The range of potential change of the group with fungi was greater, with overall potentials more negative than that of the sterile group. The potential of the group with fungi, initially increased and then decreased with time. The corrosion mechanisms primarily involved fungi metabolite corrosion and oxygen-concentration cell corrosion, while the chloride ions play a role in facilitating the growth of fungi and accelerating the corrosion.

Key words:  Aspergillus aculeatus      coastal atmospheric environment      Al-alloy      corrosion morphology      corrosion potential      corrosion mechanism     
Received:  25 June 2024      32134.14.1005.4537.2024.191
ZTFLH:  TG172.3  
Fund: National Natural Science Foundation of China(51971032)
Corresponding Authors:  XIAO Kui, E-mail: xiaokui@ustb.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.191     OR     https://www.jcscp.org/EN/Y2025/V45/I3/631

Fig.1  Changes of pH value of Aspergillus aculeatus in liquid medium
Time dpH

Oxalic acid

mg/mL

Tartaric acid

mg/mL

Malic acid

mg/mL

Lactic acid

mg/mL

Acetic acid

mg/mL

Citric acid

mg/mL

16.033234.818.621.38.125.414.9
34.383571.919.523.72.531.51.8
54.894560.020.730.24.325.42.3
75.995003.121.231.20.818.72.9
105.236074.324.738.11.34.51.1
145.566223.935.267.50.42.90.1
Table 1  Organic acid concentration of Aspergillus aculeatus in liquid medium
Fig.2  Macroscopic morphologies of 5A02 Al-alloy surface in aseptic group after 1 d (a), 3 d (b), 7 d (c) and 14 d (d) exposure time
Fig.3  Macroscopic morphologies of 5A02 Al-alloy surface in bacteria-containing group after 1 d (a), 3 d (b), 7 d (c) and 14 d (d) exposure time
Fig.4  Confocal morphologies of the surface of the sample after 14 d of exposure after rust removal: (a) sterility, (b) bacterium
AreaHorizon / μmVertical / μm
ab125.3564.393
cd513.08610.139
Table 2  Parameters of etch pits on the sample surface under 0.01%NaCl thin liquid film
Fig.5  Surface morphologies of 5A02 Al-alloy in sterile group after 1 d (a), 3 d (b), 7 d (c) and 14 d (d) exposure time
PositionAlClOCNaMgTotal
A59.680.8420.8517.03-1.6100
B85.45-6.206.30-2.05100
Table 3  EDS element content on the surface of sterile samples
Fig.6  Surface morphologies of 5A02 Al-alloy after 1 d (a, b), 3 d (c, d), 7 d (e, f) and 14 d (g, h) exposure time in the bacterial group
PositionAlClOCNaMgTotal
A51.210.328.6638.130.531.15100.00
B28.7731.2124.0915.120.490.32100.00
C32.143.7357.584.281.580.69100.00
Table 4  EDS element content on the surface of samples with bacteria group
Fig.7  EDS mapping of 5A02 Al-alloy sample surface after mold degradation: (a) SEM, (b) Al, (c) Cl, (d) Na, (e) C, (f) O
Fig.8  XPS full spectrum and high-resolution spectra of elements on the surface of 5A02 Al-alloy samples after mold degradation: (a) full spectrum, (b) Al 2p spectrum, (c) C 1s spectrum, (d) O 1s spectrum
Fig.9  SKP potential distribution on the surface of 5A02 aluminum alloy sample after exposure test in bacteria group (a-d) and sterile group (e-h) for 1 d (a, e), 3 d (b, f), 7 d (c, g) and 14 d (d, h)
Aspergillus aculeatusμ / Vσ2Sterileμ / Vσ2
a-0.768801.309912e-0.316400.873802
b0.110450.120542f0.229380.1191912
c-0.755146.620632g-0.390340.144492
d-0.825540.539902h-0.504510.531992
Table 5  Gaussian fitting parameters of Kelvin potential distribution on the surface of 5A02 aluminum alloy sample
[1] Wang X N, Chen X M, Huan P C, et al. Review of laser-arc hybrid welding process of aluminum alloys for new energy vehicles (Invited) [J]. Chin. J. Lasers, 2024, 51: 0402102
王晓南, 陈夏明, 环鹏程 等. 新能源汽车用铝合金激光-电弧复合焊接研究进展(特邀) [J]. 中国激光, 2024, 51: 0402102
[2] Li D Q. Corrosion resistance of marine aluminum alloy and its application on ships and warships [J]. Alum. Fabr., 2023, (6): 7
李德奇. 海洋铝合金的抗蚀性及其在舰船上的应用 [J]. 铝加工, 2023, (6): 7
[3] Wang Z Q, Xue H, Li J M, et al. Research progress and applications of conductive aluminum alloys used in transportation [J]. Mod. Transp. Metall. Mater., 2024, 4(1): 11
王志琪, 薛 昊, 李佳铭 等. 交通运输用导电铝合金的应用现状及研究进展 [J]. 现代交通与冶金材料, 2024, 4(1): 11
[4] Zhao W B, Chang W J, Dai H F, et al. Chemical constituents from marine-derived fungus Aspergillus insulicola [J]. Chin. J. Mar. Drugs, 2023, 42(6): 61
赵伟博, 畅文军, 戴好富 等. 深海曲霉属真菌Aspergillus insulicola的化学成分研究 [J]. 中国海洋药物, 2023, 42(6): 61
[5] Liang H Q, Chen W F, Fan Y K, et al. Research progress on the secondary metabolites and activities of endophytic fungi of genus Aspergillus and Trichoderma from mangroves [J]. J. Trop. Oceanogr., 2023, 42(4): 12
梁寒峭, 陈文凤, 范益铠 等. 红树林来源曲霉属和木霉属内生真菌次生代谢产物及活性研究进展 [J]. 热带海洋学报, 2023, 42(4): 12
[6] Wang Y, Zhang Y Q, Xu Z F, et al. Study on the diketopiperazines from the Lumnitzera littorea-derived fungus Aspergillus terreus HT-1 [J]. Chin. J. Mar. Drugs, 2022, 41(6): 10
王 越, 张玉琴, 徐喆菲 等. 红榄李内生真菌Aspergillus terreus HT-1二酮哌嗪类次级代谢产物研究 [J]. 中国海洋药物, 2022, 41(6): 10
[7] Huang Y, Liu S J, Jiang C Y. Microbiologically influenced corrosion and mechanisms [J]. Microbiol. China, 2017, 44: 1699
黄 烨, 刘双江, 姜成英. 微生物腐蚀及腐蚀机理研究进展 [J]. 微生物学通报, 2017, 44: 1699
[8] Xu D K, Li Y C, Song F M, et al. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis [J]. Corros. Sci., 2013, 77: 385
[9] Song B Q, Chen X, Ma G Y, et al. Effect of SRB on corrosion behavior of X70 pipeline steel in near-neutral pH solution [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 212
宋博强, 陈 旭, 马贵阳 等. SRB对X70管线钢在近中性pH溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 212
doi: 10.11902/1005.4537.2015.116
[10] Mei M, Zheng H A, Gao Y, et al. Effect of iron bacteria on corrosion behavior of 20 carbon steel in circulation cooling system [J]. Mater. Prot., 2017, 50(1): 26
梅 朦, 郑红艾, 高 阳 等. 循环冷却水含铁细菌对20碳钢管壁腐蚀行为的影响 [J]. 材料保护, 2017, 50(1): 26
[11] Yao R, Zhang Q L, Qin F L, et al. Effect of iron bacteria on corrosion behavior of J55 steel [J]. Corros. Prot., 2016, 37: 206
姚 蓉, 张秋利, 秦芳玲 等. 铁细菌对J55钢腐蚀行为的影响 [J]. 腐蚀与防护, 2016, 37: 206
[12] Deen K M, Yousaf M, Afzal N, et al. Microbiological influenced corrosion attack by Bacillus Megaterium bacteria on Al-Cu alloy [J]. Mater. Technol., 2014, 29: 269
[13] Javed M A, Stoddart P R, Wade S A. Corrosion of carbon steel by sulphate reducing bacteria: Initial attachment and the role of ferrous ions [J]. Corros. Sci., 2015, 93: 48
[14] Chen N N, Liu Q Q, Feng Y L, et al. Microbial corrosion behavior and mechanism of 5A06 aluminum alloy under low dose proton radiation [J]. J. Mater. Res. Technol., 2023, 27: 4533
[15] Jirón-Lazos U, Corvo F, De la Rosa S C, et al. Localized corrosion of aluminum alloy 6061 in the presence of Aspergillus niger [J]. Int. Biodeter. Biodegrad., 2018, 133: 17
[16] Guan F, Duan J Z, Zhai X F, et al. Interaction between sulfate-reducing bacteria and aluminum alloys—Corrosion mechanisms of 5052 and Al-Zn-In-Cd aluminum alloys [J]. J. Mater. Sci. Technol., 2020, 36: 55
doi: 10.1016/j.jmst.2019.07.009
[17] Shen Y Y, Dong Y H, Yang Y, et al. Study of pitting corrosion inhibition effect on aluminum alloy in seawater by biomineralized film [J]. Bioelectrochemistry, 2020, 132: 107408
[18] Yang L, Lübeck M, Lübeck P S. Aspergillus as a versatile cell factory for organic acid production [J]. Fungal Biol. Rev., 2017, 31: 33
[19] Dezam A P G, Vasconcellos V M, Lacava P T, et al. Microbial production of organic acids by endophytic fungi [J]. Biocatal. Agric. Biotechnol., 2017, 11: 282
[20] Yousef A E, Marth E H. Growth and synthesis of aflatoxin by Aspergillus parasiticus in the presence of sorbic acid [J]. J. Food Prot., 1981, 44: 736
doi: 10.4315/0362-028X-44.10.736 pmid: 30856758
[21] Yang W Z, Tu J, Liu N, et al. Advances in signal regulation and detection strategies for autophagy in fungal cells [J]. Acta Pharm. Sin., 2020, 55: 1431
杨万镇, 涂 杰, 刘 娜 等. 真菌细胞自噬的信号调节和检测策略研究进展 [J]. 药学学报, 2020, 55: 1431
[22] Chen J, Chu J, Zhuang Y P, et al. Correlation between organic acids accumulation and biosynthesis of avermectin [J]. J. East China Univ. Sci. Technol. (Nat. Sci. Ed.), 2005, 31: 731
谌 颉, 储 炬, 庄英萍 等. 阿维菌素发酵过程有机酸积累规律与生物合成的关系 [J]. 华东理工大学学报(自然科学版), 2005, 31: 731
[23] Zhang Y X, Chen C Y, Liu H W, et al. Research progress on mold corrosion of aluminum alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 13
张雨轩, 陈翠颖, 刘宏伟 等. 铝合金霉菌腐蚀研究进展 [J]. 腐蚀与防护学报, 2021, 41: 13
[24] Lu J J, Wan Y J, Fu Y Q. Advances in production of organic acid by rhizopus sp.integrated with in-situ product separation process [J]. J. Taizhou Univ., 2012, 34(6): 27
陆君洁, 万永军, 付永前. 根霉菌反应分离耦合生产有机酸的研究进展 [J]. 台州学院学报, 2012, 34(6): 27
[25] Xu P, Zhao M H, Fu X, et al. Effect of chloride ions on the corrosion behavior of carbon steel in an iron bacteria system [J]. RSC Adv., 2022, 12: 15158
doi: 10.1039/d2ra02410a pmid: 35702434
[26] Qian H C, Zhang J T, Cui T Y, et al. Influence of NaCl concentration on microbiologically influenced corrosion of carbon steel by halophilic archaeon Natronorubrum tibetense [J]. Bioelectrochemistry, 2021, 140: 107746
[27] Feng Y L, Li X M, Zhao Y, et al. Corrosion behaviour of copper under the action of chlorine-containing thin liquid film and Aspergillus versicolor [J]. Surf. Technol., 2022, 51(9): 178
冯亚丽, 李雪鸣, 赵 永 等. 铜在含氯薄液膜和杂色曲霉作用下的腐蚀行为 [J]. 表面技术, 2022, 51(9): 178
[28] Yang B, Zhong W A, Tang G J, et al. Application progress of corrosion protection for electronic and electrical equipment in coastal space launch sites [J]. Corros. Prot., 2022, 43(3): 1
杨 波, 钟文安, 唐功建 等. 滨海发射场电子电气设备腐蚀防护应用进展 [J]. 腐蚀与防护, 2022, 43(3): 1
[29] Planý M, Pinzari F, Šoltys K, et al. Fungal-induced atmospheric iron corrosion in an indoor environment [J]. Int. Biodeter. Biodegrad., 2021, 159: 105204
[30] Zou S W, Xiao K, Dong C F, et al. Effect of mold on corrosion behavior of immersion silver finished printed circuit board [J]. Sci. Technol. Rev., 2012, 30(11): 21
doi: 10.3981/j.issn.1000-7857.2012.11.001
邹士文, 肖 葵, 董超芳 等. 霉菌对化学浸银处理印制电路板腐蚀行为影响 [J]. 科技导报, 2012, 30(11): 21
[31] Guo H W. A simple algorithm for fitting a Gaussian function [DSP tips and tricks] [J]. IEEE Signal Process. Mag., 2011, 28: 134
[32] Miečinskas P, Leinartas K, Uksienė V, et al. QCM study of microbiological activity during long-term exposure to atmosphere—aluminium colonisation by Aspergillus Niger [J]. J. Solid State Electrochem., 2007, 11: 909
[33] He J Q, Tan Y, Liu H X, et al. Extracellular polymeric substances secreted by marine fungus Aspergillus terreus: Full characterization and detailed effects on aluminum alloy corrosion [J]. Corros. Sci., 2022, 209: 110703
[34] Cui T Y, Qian H C, Lou Y T, et al. Single-cell level investigation of microbiologically induced degradation of passive film of stainless steel via FIB-SEM/TEM and multi-mode AFM [J]. Corros. Sci., 2022, 206: 110543
[35] Dong Y Q, Feng D Q, Song G L, et al. The effect of a biofilm-forming bacterium Tenacibaculum mesophilum D-6 on the passive film of stainless steel in the marine environment [J]. Sci. Total Environ., 2022, 815: 152909
[36] Wang J L, Xiong F P, Liu H W, et al. Study of the corrosion behavior of Aspergillus niger on 7075-T6 aluminum alloy in a high salinity environment [J]. Bioelectrochemistry, 2019, 129: 10
[37] Qu Q, Li S L, Li L, et al. Adsorption and corrosion behaviour of Trichoderma harzianum for AZ31B magnesium alloy in artificial seawater [J]. Corros. Sci., 2017, 118: 12
[1] DU Jin, HU Linlan, SUN Jian, SONG Qinghua, CHEN Meng, XIAO Jinkun. Tribo-corrosion Performance of 7075-T6 Al-alloy in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(3): 803-811.
[2] WANG Yuhan, LI Jun, LIU Hengwei, XU Nan, LIU Jie, CHEN Xu. Research Progress of Microbial Corrosion of Metallic Materials in Marine Environment[J]. 中国腐蚀与防护学报, 2025, 45(3): 577-588.
[3] ZHENG Wentao, LU Feixue, DU Kai, WANG Zhihui, JIA Hailong. Effect of Shot Peening on Surface Properties of 7075 Al-alloy Sheet[J]. 中国腐蚀与防护学报, 2025, 45(3): 765-772.
[4] LI Li, LI Shanwen, SHI Hongwei, LIANG Guoping, LI Chunlin, SUN Yu, QIN Jin, WANG Wei, HAN En-Hou. Corrosion Behavior and Hydrothermal Aging Mechanism of Epoxy Primer on Al-alloy for High-speed Train[J]. 中国腐蚀与防护学报, 2025, 45(3): 757-764.
[5] WANG Mingyang, XIA Da-Hai. Research Progress on Hydrogen Embrittlement Mechanism of High Strength Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(2): 261-270.
[6] ZHAI Xiwei, LIU Shiyi, WANG Li, JIA Ruiling, ZHANG Huixia. Effect of Applied Load on Corrosion Behavior of 5383 Al-alloy Welded Joints[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[7] WENG Shuo, MENG Chao, LUO Linghua, YUAN Yiwen, ZHAO Lihui, FENG Jinzhi. Evolution of Corrosion Damage Characteristics of AA7075-T651 Al-alloy Under Mechanical-chemical Interaction Based on Cellular Automata Method[J]. 中国腐蚀与防护学报, 2024, 44(6): 1507-1517.
[8] ZHAO Qian, ZHANG Jie, MAO Ruirui, MIAO Chunhui, BIAN Yafei, TENG Yue, TANG Wenming. Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[9] FAN Zhibin, GAO Zhiyue, ZONG Lijun, WU Yaping, LI Xingeng, JIANG Bo, DU Baoshuai. Corrosion Behaviour and Characteristics of 1050A Al-alloy Exposed in Typical Atmospheres of Shandong Province[J]. 中国腐蚀与防护学报, 2024, 44(4): 1055-1063.
[10] QIAO Ze, LI Qingquan, LIU Xiaohang, LI Yizhou. Effect of Nitrate and Galvanic Couple on Crevice Corrosion Behavior of 7075-T651 Al-alloy in Neutral NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[11] WU Hailiang, CHEN Yuqiang, HUANG Liang, GU Hongyu, SUN Hongbo, LIU Jiajun, WANG Naiguang, SONG Yufeng. Corrosion Behavior of Welded Partitions of 3003 Al-alloy Used for Radiators of High-speed Train[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[12] WU Yang, AN Yiqiang, WANG Liwei, CUI Zhongyu. Atmospheric Corrosion Behavior of Mg-alloys AZ31B and AZ91D in Simulated Low Temperature Environments[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[13] WENG Shuo, MENG Chao, ZHU Jiangfeng, WANG Ai, CHANG Xin, KANG Yun, HE Xiaotian, ZHAO Lihui. Effect of Fatigue Damage Under Stress-controlled Mode on the Corrosion Behavior of AA7075-T651 Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.
[14] HE Jiaxuan, ZHANG Yutong, GUAN Xudong, TANG Jianhua, HUANG Hai, ZHAO Xuhui, TANG Yuming, ZUO Yu. Present Status and Progress of Corrosion Protection for Microchannel Heat Exchangers of Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[15] HAN Dongxiao, JI Wenhui, WANG Tong, WANG Wei. Water Penetration Behavior of Epoxy Coating Based on Distribution of Relaxation Time and Finite Element Simulation[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
No Suggested Reading articles found!