Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 429-436    DOI: 10.11902/1005.4537.2023.093
Current Issue | Archive | Adv Search |
Effect of Deformation Strengthening and Phase Reversion Grain Refinement Strengthening on Corrosion Resistance of Fe-18Cr-8Ni Steel
WANG Zhihui1, WU Lei1, JIANG Yishan2(), ZHANG Xian1, WAN Xiangliang1, LI Guangqiang1, WU Kaiming1,3
1.Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
2.Academy of Green Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
3.Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China
Cite this article: 

WANG Zhihui, WU Lei, JIANG Yishan, ZHANG Xian, WAN Xiangliang, LI Guangqiang, WU Kaiming. Effect of Deformation Strengthening and Phase Reversion Grain Refinement Strengthening on Corrosion Resistance of Fe-18Cr-8Ni Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 429-436.

Download:  HTML  PDF(13322KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cold rolling and reverse phase transformation are the main methods to enhance the yield strength of austenitic stainless steel. Therefore, the effect of deformation strengthening and grain refinement strengthening on the microstructure and corrosion behavior of Fe-18Cr-8Ni austenitic stainless steel was characterized by SEM, TEM, EBSD, electrochemical workstation and other technical characterization means. The results show that the deformation strengthening and the inverse phase transformation induced grain refinement strengthening could enhance the pitting resistance of austenitic stainless steel in 3.5%NaCl solution, grain refinement led to an increase in grain boundary density, which promote the diffusion rate of Cr at grain boundaries, thereby improving the stability and compactness of the passivation film. After sensitization treatment, deformation strengthening and inverse phase transformation induced grain refinement strengthening could enhance the intergranular corrosion resistance of austenitic stainless steel. The appearance of Cr-depletion zone around chromium carbide precipitates will deteriorate the intergranular corrosion resistance of the steel, while the rapid diffusion of Cr in ultrafine grain/fine grain structure will promoted the rapid healing of the passivation film on the Cr-depletion zone, thus the intergranular corrosion resistance of the steel may be improved.

Key words:  austenitic stainless steel      deformation strengthening      fine grained strengthening      intergranular corrosion     
Received:  27 March 2023      32134.14.1005.4537.2023.093
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(U20A20277);Guangxi Science and Technology Major Special Project(AA22068080)
Corresponding Authors:  JIANG Yishan, E-mail: jiangyishan@wust.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.093     OR     https://www.jcscp.org/EN/Y2024/V44/I2/429

Fig.1  Microstructures of original sample (a), CR sample (b) and UFG/FG sample (c)
Fig.2  TEM morphologies of original sample (a, d), CR sample (b, e) and UFG/FG sample (c, f)
Fig.3  EBSD diagrams (a-c) and grain size distribution images (d-f) of original sample (a, d), CR sample (b, e) and UFG/FG sample (c, f)
Fig.4  Potentiodynamic polarization curves of three steels in 3.5%NaCl solution
Steel sampleEpit / VEcorr / V vs SCEIcorr / A·cm-2
Original0.41-0.381.02 × 10-14
CR0.48-0.982.47 × 10-11
UFG/FG0.75-1.125.09 × 10-10
Table 1  Pitting potential (Epit), corrosion potensial (Ecorr) and corrosion current density (Icorr) of three steels in 3.5%NaCl solution
Fig.5  SEM microstructure of original sample (a, d), CR sample (b, e) and UFG/FG sample (c, f) after sensitization treatment
Fig.6  Potentiodynamic polarization curve (a) and reactivation curve (b) of three steels in saturated CuSO4 solution
Steel sampleAverage grain size / μmEpit / VIr / A·cm-2Ia / A·cm-2Reactivation ratio
Original14.50.410.004480.0098845.34%
CR11.60.480.320290.9531433.60%
UFG/FG2.80.750.000380.985590.39%
Table 2  Grain size and corrosion resistance of three steels
Fig.7  Pitting potential -grain size curve (a) and reactivation rate-grain size curve (b) of three steels
1 Gardner L. The use of stainless steel in structures[J]. Prog. Struct. Eng. Mater., 2005, 7: 45
doi: 10.1002/pse.v7:2
2 Cheng X Q, Li X G, Du C W. Electrochemical behavior of 316L stainless steel in Cl- containing acetic acid solution under high temperature[J]. Acta Metall. Sin., 2006, 42: 299
3 Zhang Z C. Study on corrosion resistance of 316L austenitic stainless steel by increasing nitrogen element and decreasing nickel element[D]. Baotou: Inner Mongolia University of Science and Technology, 2020
张占川. 增氮降镍316L奥氏体不锈钢抗腐蚀性能研究[D]. 包头: 内蒙古科技大学, 2020
4 Maki T. Stainless steel: Progress in thermomechanical treatment[J]. Curr. Opin. Solid State Mater. Sci., 1997, 2: 290
doi: 10.1016/S1359-0286(97)80117-9
5 Milad M, Zreiba N, Elhalouani F, et al. The effect of cold work on structure and properties of AISI 304 stainless steel[J]. J. Mater. Process. Technol., 2008, 203: 80
doi: 10.1016/j.jmatprotec.2007.09.080
6 Huang J X, Ye X N, Xu Z. Effect of cold rolling on microstructure and mechanical properties of AISI 301LN metastable austenitic stainless steels[J]. J. Iron Steel Res. Int., 2012, 19: 59
7 Eskandari M, Najafizadeh A, Kermanpur A. Effect of strain-induced martensite on the formation of nanocrystalline 316L stainless steel after cold rolling and annealing[J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2009, 519(1/2), 46
8 Ge J, Ren Z Y. Austenitic stainless steel intergranular corrosion cause analysis and countermeasures[J]. Sichuan Chem. Ind., 2015, 18(5): 28
葛 晶, 任中育. 奥氏体不锈钢晶间腐蚀原因分析和对策[J]. 四川化工, 2015, 18(5): 28
9 Yi P, Hou L F, Du H Y, et al. NaCl induced corrosion of three austenitic stainless steels at high temperature[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
伊 璞, 侯利锋, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42: 288
10 Kasparova O V, Baldokhin Y V. New concept of the mechanism of intergranular corrosion of stainless steels[J]. Prot. Met., 2007, 43: 235
doi: 10.1134/S0033173207030058
11 Feng Y P, Zhang X, Wu K M, et al. Influence of heat treatment process on microstructure and corrosion resistance of ultrafine Bainite steel[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 602
冯彦朋, 张 弦, 吴开明 等. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41: 602
doi: 10.11902/1005.4537.2020.220
12 Hamdy A S, El-Shenawy E, El-Bitar T. The corrosion behavior of niobium bearing cold deformed austenitic stainless steels in 3.5% NaCl solution[J]. Mater. Lett., 2007, 61: 2827
doi: 10.1016/j.matlet.2006.10.043
13 Poonguzhali A, Pujar M G, Kamachi Mudali U. Effect of nitrogen and sensitization on the microstructure and pitting corrosion behavior of AISI type 316LN stainless steels[J]. J. Mater. Eng. Perform., 2013, 22: 1170
doi: 10.1007/s11665-012-0356-3
14 Wei B M. Metallic Corrosion Theories and Applications[M]. Beijing: Chemical Industry Press, 1984
魏宝明. 金属腐蚀理论及应用[M]. 北京: 化学工业出版社, 1984
15 Di Schino A, Kenny J M. Grain refinement strengthening of a micro-crystalline high nitrogen austenitic stainless steel[J]. Mater. Lett., 2003, 57: 1830
doi: 10.1016/S0167-577X(02)01076-5
16 Uggowitzer P J, Harzenmoser M. The strengthening effect of nitrogen on austenitic stainless steel[A]. Translation of High Nitrogen Steel[C]. Shanghai, 1990: 120
17 Lee T H, Oh C S, Lee C G, et al. Precipitation of σ-phase in high-nitrogen austenitic 18Cr-18Mn-2Mo-0.9N stainless steel during isothermal aging[J]. Scr. Mater., 2004, 50: 1325
doi: 10.1016/j.scriptamat.2004.02.013
18 Li S X, He Y N, Yu S R, et al. Evaluation of the effect of grain size on chromium carbide precipitation and intergranular corrosion of 316L stainless steel[J]. Corros. Sci., 2013, 66: 211
doi: 10.1016/j.corsci.2012.09.022
19 Barr C M, Thomas S, Hart J L, et al. Tracking the evolution of intergranular corrosion through twin-related domains in grain boundary networks[J]. npj Mater. Degrad., 2018, 2: 14
doi: 10.1038/s41529-018-0032-7
20 Chen A Y, Hu W F, Wang D, et al. Improving the intergranular corrosion resistance of austenitic stainless steel by high density twinned structure[J]. Scr. Mater., 2017, 130: 264
doi: 10.1016/j.scriptamat.2016.11.032
21 Wu L, Hu C Y, Ke R, et al. Insights into the plasticization mechanism in different 18Cr-8Ni austenitic stainless steel: study of the phase reverted structure versus cold-deformed structure[J]. Steel Res. Int., 2022, 93: 2200122
doi: 10.1002/srin.v93.11
22 Li B Q, Sui M L, Mao S X. Twinnability predication for fcc metals[J]. J. Mater. Sci. Technol., 2011, 27: 97
doi: 10.1016/S1005-0302(11)60032-7
23 Zhang X, Sawaguchi T. Twinning of deformation-induced ε-martensite in Fe-30Mn-6Si shape memory alloy[J]. Acta Mater., 2018, 143: 237
doi: 10.1016/j.actamat.2017.10.009
24 De Abreu H F G, De Carvalho S S, De Lima Neto P, et al. Deformation induced martensite in an AISI 301LN stainless steel: characterization and influence on pitting corrosion resistance[J]. Mater. Res., 2007, 10: 359
doi: 10.1590/S1516-14392007000400007
25 Sabooni S, Rashtchi H, Eslami A, et al. Dependence of corrosion properties of AISI 304L stainless steel on the austenite grain size[J]. Int. J. Mater. Res., 2017, 108: 552
doi: 10.3139/146.111512
26 Abbasi Aghuy A, Zakeri M, Moayed M H, et al. Effect of grain size on pitting corrosion of 304L austenitic stainless steel[J]. Corros. Sci., 2015, 94: 368
doi: 10.1016/j.corsci.2015.02.024
27 Kim H P, Kim D J. Intergranular corrosion of stainless steel[J]. Corros. Sci. Technol., 2018, 17: 183
28 Stawström C, Hillert M. An improved depleted-zone theory of intergranular corrosion of 18-8 stainless steel[J]. J. Phys. Chem., 1969, 207: 77
29 Beltran R, Maldonado J G, Murr L E, et al. Effects of strain and grain size on carbide precipitation and corrosion sensitization behavior in 304 stainless steel[J]. Acta Mater., 1997, 45: 4351
doi: 10.1016/S1359-6454(97)00106-7
[1] SHANG Qiang, MAN Cheng, PANG Kun, CUI Zhongyu, DONG Chaofang, CUI Hongzhi. Mechanism of Post-heat Treatment on Intergranular Corrosion Behavior of SLM-316L Stainless Steel with Different Carbon Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[2] LIANG Chaoxiong, LIANG Xiaohong, HAN Peide. Effect of a New Heat Treatment Process on B Elements Distribution, Second Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[3] WANG Yanfei, LI Yaozhou, HUANG Yuting, XIE Honglin, WU Weijie. Effect of Grain Size on Hydrogen Embrittlement of 304L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[4] HAN Ruizhu, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, HOU Lifeng, WEI Yinghui. Corrosion Behavior of Three Super Austenitic Stainless Steels in a Molten Salts Mixture at 650-750 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 421-427.
[5] HE Zhihao, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, HOU Lifeng, WEI Yinghui. Passivation Behavior of Super Austenitic Stainless Steels in Simulated Flue Gas Desulfurization Condensate[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[6] CHEN Tingting, WU Xiaolei, HAN Peide. Gradient Nanotwin Structure Prepared by SMAT Technology on S31254 Super Austenitic Stainless Steel Surface and Its Corrosion Behavior in 10%NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[7] LV Yingxi. Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[8] YI Pu, HOU Lifeng, DU Huayun, LIU Xiaoda, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, WEI Yinghui. NaCl Induced Corrosion of Three Austenitic Stainless Steels at High Temperature[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
[9] YIN Yangyang, LIU Jianfeng, MIAO Keji, WANG Ting, NING Kai, PAN Weiguo, YUAN Binxia, YIN Shibin. Effect of SO42- on Corrosion of Stainless Steel in Solutions Containing Cl-[J]. 中国腐蚀与防护学报, 2022, 42(1): 34-38.
[10] XU Guifang, LI Yuan, LEI Yucheng, ZHU Qiang. Effect of Relative Flow Velocity on Corrosion Behavior of High Nitrogen Austenitic Stainless Steel in Liquid Lead-bismuth Eutectic Alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[11] ZHANG Huiyun, ZHENG Liuwei, MENG Xianming, LIANG Wei. Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement Sensitivity of Cr15 Ferritic and 304 Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[12] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[13] Hui LIU,Wei QIU,Bin LENG,Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[14] Xiwu LIU,Xiaoyan ZHAO,Xin'an CUI,Lanfei XU,Xiaowei LI,Rongqi CHENG. Corrosion Behavior of 304L Stainless Steel in Nitric Acid-Sodium Nitrate Solutions[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[15] Xiaoyan ZHAO, Xiwu LIU, Xin'an CUI, Fengchang YU. Corrosion Behavior of 304L Steel in Nitric Acid Environment[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
No Suggested Reading articles found!