Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (5): 1157-1163    DOI: 10.11902/1005.4537.2023.327
Current Issue | Archive | Adv Search |
Intergranular Corrosion of High Temperature Ni-based Alloy GH3535 Induced by Fission Product Tellurium
DU Xin, DU Qian, SU Zhengxiong, GUO Shaoqiang(), WANG Sheng()
School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article: 

DU Xin, DU Qian, SU Zhengxiong, GUO Shaoqiang, WANG Sheng. Intergranular Corrosion of High Temperature Ni-based Alloy GH3535 Induced by Fission Product Tellurium. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1157-1163.

Download:  HTML  PDF(23977KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In molten salt reactors, the interaction between fission products dissolved in the fuel salt with the structural alloys is a critical issue. Notably, the presence of tellurium (Te) poses a significant challenge by inducing intergranular cracks (IGC) for high temperature Ni-based alloys. Herewith, the corrosion behavior of high temperature Ni-based alloy GH3535 exposed to Te vapor (i.e. the test alloy with nominal doses of 1, 6, and 10 mg/cm2 Te powders respectively were vacuum sealed in a quartz tube) at 700oC for 150 h was assessed by means of scanning electron microscope (SEM), electron probe microanalyzer (EPMA), and transmission electron microscope (TEM), in terms of corrosion products and Te diffusion behavior. Results reveal that a dual-layered corrosion product was observed on the alloy surface after being exposed to Te vapor for 150 h at 700oC. The outer telluride layer comprised Ni3Te2, Ni3Te2.07, and Cr2Te3, exhibiting a thickness directly proportional to the Te concentration. The inner ones represented a diffusion layer containing elongated Te-rich phases resulting from the inward diffusion of Te into the alloy matrix. Te diffusion was observed predominantly along grain boundaries (GB), penetrating to deeper regions and segregating there. It follows that the findings may provide a meaningful reference for understanding the Te-induced IGC, namely, this diffusion process led to a conspicuous depletion of Ni, Fe, and Cr at GB, thereby facilitating significantly the occurrence of IGC.

Key words:  Molten salt reactor      Nickel alloy      Tellurium      Intergranular corrosion     
Received:  17 October 2023      32134.14.1005.4537.2023.327
ZTFLH:  TG172  
Fund: Natural Science Basic Research Program of Shaanxi Province(2022JQ-372)
Corresponding Authors:  GUO Shaoqiang, E-mail: guos2019@xjtu.edu.cnWANG Sheng, E-mail: shengwang@xjtu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.327     OR     https://www.jcscp.org/EN/Y2024/V44/I5/1157

Fig.1  Surface morphologies of GH3535 Ni-based alloy samples after exposure in 1 mg/cm2 (a), 6 mg/cm2 (b), and 10 mg/cm2 (c) Te vapor at 700oC for 150 h
Fig.2  XRD patterns of GH3535 Ni-based alloy after corrosion
Fig.3  SEM image and EDS element mappings of GH3535 Ni-based alloy after corrosion in 1 mg/cm2 (a), 6 mg/cm2 (b) and 10 mg/cm2 (c) Te at 700oC
Fig.4  EPMA element mappings of GH3535 alloy after corrosion in 10 mg/cm2 Te at 700oC
Fig.5  TEM image and EDS element mappings of GH3535 alloy after corrosion in 10 mg/cm2 (a) and 1 mg/cm2 (b) Te at 700oC
Fig.6  TEM image (a), EDS element mappings (b-f) of GH3535 alloy after corrosion in 10 mg/cm2 Te at 700oC, HRTEM image of the selective area marked by yellow square in Fig.6a (g), and the corresponding fast-Fourier transform pattern (h)
1 McCoy Jr H E. Status of materials development for molten salt reactors [R]. Oak Ridge: Oak Ridge National Laboratory, 1978
2 Cai X Z, Dai Z M, Xu H J. Thorium molten salt reactor nuclear energy system [J]. Physics, 2016, 45: 578
蔡翔舟, 戴志敏, 徐洪杰. 钍基熔盐堆核能系统 [J]. 物理, 2016, 45: 578
3 Guo S Q, Zhang J S, Wu W, et al. Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications [J]. Prog. Mater. Sci., 2018, 97: 448
4 Xu Y X, Zeng C L. Corrosion of materials for molten salt reactor [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 211
徐雅欣, 曾潮流. 熔盐电堆的材料腐蚀 [J]. 中国腐蚀与防护学报, 2014, 34: 211
doi: 10.11902/1005.4537.2013.117
5 Wu J J, Wang Y L. Hot corrosion and protection of structural materials in molten salt reactor [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 193
吴家杰, 王艳丽. 熔盐堆用结构材料的热腐蚀及防护 [J]. 中国腐蚀与防护学报, 2022, 42: 193
doi: 10.11902/1005.4537.2021.070
6 Liu T, Dong J S, Xie G, et al. Corrosion behavior of GH3535 superalloy in FLiNaK molten salt [J]. Acta Metall. Sin., 2015, 51: 1059
doi: 10.11900/0412.1961.2015.00132
刘 涛, 董加胜, 谢 光 等. GH3535合金在FLiNaK熔盐中的腐蚀行为 [J]. 金属学报, 2015, 51: 1059
7 Keiser J R. Status of tellurium-Hastelloy N studies in molten fluoride salts [R]. Oak Ridge: Oak Ridge National Laboratory, 1977
8 Jia Y Y, Cheng H W, Qiu J, et al. Effect of temperature on diffusion behavior of Te into nickel [J]. J. Nucl. Mater., 2013, 441: 372
9 Cheng H W, Leng B, Chen K, et al. EPMA and TEM characterization of intergranular tellurium corrosion of Ni-16Mo-7Cr-4Fe superalloy [J]. Corros. Sci., 2015, 97: 1
10 Jia Y Y, Li Z F, Ye X X, et al. Effect of Cr contents on the diffusion behavior of Te in Ni-based alloy [J]. J. Nucl. Mater., 2017, 497: 101
11 Han F F, Wang X D, Jia Y Y, et al. Effect of grain boundary carbides on the diffusion behavior of Te in Ni-16Mo-7Cr base superalloy [J]. Mater. Charact., 2020, 164: 110329
12 Ball R G J, Cordfunke E H P, Konings R J M. Thermochemical data acquisition. Part II [R]. Luxembourg: Commission of the European Communities, 1992
13 Azad A M, Sreedharan O M. Chromium activity in the Cr-Te system using a CaF2 EMF method [J]. J. Nucl. Mater. 1989, 167: 89
14 Knacke O, Kubaschewski O, Hesselman K. Thermochemical Properties of Inorganic Substances [M]. Berlin: Springer-Verlag, 1991
15 Wang C Y, Han H, Wickramaratne D, et al. Diffusion of tellurium at nickel grain boundaries: a first-principles study [J]. RSC Adv., 2017, 7: 8421
16 Murarka S P, Anand M S, Agarwala R P. Diffusion of chromium in nickel [J]. J. Appl. Phys., 1964, 35: 1339
17 Zhu N Q, Li J C, Lu X G, et al. Experimental and computational study of diffusion mobilities for fcc Ni-Cr-Mo alloys [J]. Metall. Mater. Trans., A, 2015, 46A: 5444
18 Rellick J R, McMahon C J, Marcus H L, et al. The effect of tellurium on intergranular cohesion in iron [J]. Metall. Trans., 1971, 2: 1492
19 Jiang L, Fu C T, Leng B, et al. Influence of grain size on tellurium corrosion behaviors of GH3535 alloy [J]. Corros. Sci., 2019, 148: 110
doi: 10.1016/j.corsci.2018.12.007
20 Jiang L, Wang K, Leng B, et al. Tellurium segregation-induced intergranular corrosion of GH3535 alloys in molten salt [J]. Corros. Sci., 2022, 194: 109944
[1] WANG Zhihui, WU Lei, JIANG Yishan, ZHANG Xian, WAN Xiangliang, LI Guangqiang, WU Kaiming. Effect of Deformation Strengthening and Phase Reversion Grain Refinement Strengthening on Corrosion Resistance of Fe-18Cr-8Ni Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 429-436.
[2] SHANG Qiang, MAN Cheng, PANG Kun, CUI Zhongyu, DONG Chaofang, CUI Hongzhi. Mechanism of Post-heat Treatment on Intergranular Corrosion Behavior of SLM-316L Stainless Steel with Different Carbon Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[3] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[4] LIANG Chaoxiong, LIANG Xiaohong, HAN Peide. Effect of a New Heat Treatment Process on B Elements Distribution, Second Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[5] CHEN Hanlin, MA Li, HUANG Guosheng, DU Min. Effects of pH Value, Temperature and Salinity on Film Formation of B30 Cu-Ni Alloy in Seawater[J]. 中国腐蚀与防护学报, 2023, 43(3): 481-493.
[6] XING Shaohua, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei, MA Li. Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[7] WU Jiajie, WANG Yanli. Hot Corrosion and Protection of Structural Materials in Molten Salt Reactor[J]. 中国腐蚀与防护学报, 2022, 42(2): 193-199.
[8] Hui LIU,Wei QIU,Bin LENG,Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[9] Xiwu LIU,Xiaoyan ZHAO,Xin'an CUI,Lanfei XU,Xiaowei LI,Rongqi CHENG. Corrosion Behavior of 304L Stainless Steel in Nitric Acid-Sodium Nitrate Solutions[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[10] Xiaoyan ZHAO, Xiwu LIU, Xin'an CUI, Fengchang YU. Corrosion Behavior of 304L Steel in Nitric Acid Environment[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[11] Danyang LIU, Jiexia WANG, Jinfeng LI, Yonglai CHEN, Xuhu ZHANG, Xiuzhi XU, Ziqiao ZHENG. Intergranular Corrosion Behavior of T6 Aging Treated Micro-alloyed Al-Cu-Li Alloys with Mg/Ag/Zn[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[12] Deqiang LIU,Liming KE,Weiping XU,Li XING,Yuqing MAO. Intergranular Corrosion Behavior of Friction-stir Welding Joint for 20 mm Thick Plate of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[13] Xinyuan PENG,Xianliang ZHOU,Xiaozhen HUA. Effect of Grain Size on Susceptibility to Intergranular Corrosion of 316LN Stainless Steel[J]. 中国腐蚀与防护学报, 2016, 36(1): 25-30.
[14] XU Long, YAO Xi, LI Jingfeng, CAI Chao. Correlation Between Intergranular Corrosion Behavior and Aging Treatment of 2099 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2014, 34(5): 419-425.
[15] XU Yaxin, ZENG Chaoliu. Corrosion of Materials for Molten Salt Reactor[J]. 中国腐蚀与防护学报, 2014, 34(3): 211-217.
No Suggested Reading articles found!