Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (1): 61-68    DOI: 10.11902/1005.4537.2024.280
Current Issue | Archive | Adv Search |
Research Progress of Environmental Cracking of Structural Metallic Materials for High Temperature Supercritical CO2 System
LI Kaiyang, WU You, ZHANG Guanlin, ZHANG Naiqiang()
College of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
Cite this article: 

LI Kaiyang, WU You, ZHANG Guanlin, ZHANG Naiqiang. Research Progress of Environmental Cracking of Structural Metallic Materials for High Temperature Supercritical CO2 System. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 61-68.

Download:  HTML  PDF(1143KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a new energy transfer medium, supercritical CO2 (S-CO2) has shown broad application prospects in the field of energy. However, supercritical CO2 can induce high temperature corrosion of structural metallic materials as high-temperature oxidation and carburization. The synergistic effect of corrosion and stress can aggravate the corrosion of metallic materials and deteriorate their mechanical property, accelerate their degradation, and even induce environmental cracking, all of which result in serious consequences. Therefore, this article elucidates the supercritical CO2-induced oxidation and carburization, and their coupled effect; summarizes the methods to evaluate the environmental cracking induced by synergistic effect of corrosion and stress in high-temperature high-pressure supercritical CO2 environments; analyzes metallic material performances under the synergistic effect of corrosion and stress, including the change of mechanical property after corrosion, stress corrosion cracking, creep, corrosion fatigue, thermal cycling and effect of surface residual stress on corrosion, etc.; and sums up the behavior and mechanisms of environmental cracking of metallic materials. It is intended to provide theoretical guidance and technical support for the material selection and environmental cracking prevention in supercritical CO2 systems.

Key words:  supercritical CO2      environmental cracking      stress corrosion      carburization     
Received:  30 August 2024      32134.14.1005.4537.2024.280
ZTFLH:  TG171  
Fund: National Natural Science Foundation of China(52071140; 52401089);Natural Science Foundation of Beijing(2244104)
Corresponding Authors:  ZHANG Naiqiang, E-mail: zhnq@ncepu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.280     OR     https://www.jcscp.org/EN/Y2025/V45/I1/61

Fig.1  Changes of (a) UTS and (b) EL of various alloys after corrosion in S-CO2 environments[20~22]
1 White M T, Bianchi G, Chai L, et al. Review of supercritical CO2 technologies and systems for power generation [J]. Appl. Therm. Eng., 2021, 185: 116447
2 Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development [J]. Nucl. Eng. Technol., 2015, 47: 647
3 Xiang Y, Xu M H, Choi Y S. State-of-the-art overview of pipeline steel corrosion in impure dense CO2 for CCS transportation: mechanisms and models [J]. Corros. Eng. Sci. Technol., 2017, 52: 485
4 Sun C, Wang Y, Sun J B, et al. Investigation progress on corrosion behavior of supercritical CO2 transmission pipelines containing impurities in CCS [J]. J.Chin. Soc. Corros. Prot., 2015, 35: 379
孙 冲, 王 勇, 孙建波 等. 含杂质超临界CO2输送管线腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 379
5 Gui Y, Liang Z Y, Guo T S, et al. Corrosion behavior of heat-resistant materials in supercritical carbon dioxide environment [J]. J. Chin. Soc. Power Eng., 2021, 41: 602
桂 雍, 梁志远, 郭亭山 等. 超临界二氧化碳环境中耐热材料的腐蚀行为研究 [J]. 动力工程学报, 2021, 41: 602
6 Xiao B, Li K Y, Wang B H, et al. Corrosion behavior of various high-temperature materials in supercritical carbon dioxide [J]. Proc. CSEE, 2023, 43: 4198
肖 博, 李开洋, 王碧辉 等. 多种高温金属材料在超临界二氧化碳中的腐蚀行为 [J]. 中国电机工程学报, 2023, 43: 4198
7 Liang Z Y, Gui Y, Zhao Q X. Research progress on corrosion of high-temperature materials in supercritical CO2 power cycle [J]. J. Chin. Soc. Power Eng., 2021, 41: 910
梁志远, 桂 雍, 赵钦新. 超临界CO2动力循环高温材料腐蚀研究进展 [J]. 动力工程学报, 2021, 41: 910
doi: 10.19805/j.cnki.jcspe.2021.11.002
8 Xiao B, Zhu Z L, Li R T, et al. Research status of high temperature corrosion of candidate materials for power generation system using supercritical carbon dioxide as working fluid [J]. Therm. Power Gener., 2020, 49(10): 30
肖 博, 朱忠亮, 李瑞涛 等. 超临界二氧化碳工质发电系统候选材料高温腐蚀研究现状与进展 [J]. 热力发电, 2020, 49(10): 30
9 Li K Y, Zhu Z L, Xiao B, et al. State of the art overview material degradation in high-temperature supercritical CO2 environments [J]. Prog. Mater. Sci., 2023, 136: 101107
10 Liu Z, Long J C, Su H Z, et al. Understanding the stress corrosion cracking growth mechanism of a cold worked alumina-forming austenitic steel in supercritical carbon dioxide [J]. Corros. Sci., 2022, 199: 110179
11 Gheno T, Monceau D, Zhang J Q, et al. Carburisation of ferritic Fe-Cr alloys by low carbon activity gases [J]. Corros. Sci., 2011, 53: 2767
12 Sarrade S, Féron D, Rouillard F, et al. Overview on corrosion in supercritical fluids [J]. J. Supercrit. Fluids, 2017, 120: 335
13 Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513
doi: 10.11902/1005.4537.2021.130
14 Zhang N Q, Yue G Q, Lv F B, et al. Crack growth rate of stress corrosion cracking of Inconel625 in high temperature steam [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 9
张乃强, 岳国强, 吕法彬 等. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究 [J]. 中国腐蚀与防护学报, 2017, 37: 9
doi: 10.11902/1005.4537.2016.088
15 Seifert H P, Ritter S, Shoji T, et al. Environmentally-assisted cracking behaviour in the transition region of an Alloy182/SA 508 Cl.2 dissimilar metal weld joint in simulated boiling water reactor normal water chemistry environment [J]. J. Nucl. Mater., 2008, 378: 197
16 Khan H I, Zhang N Q, Yue G Q, et al. Environmentally assisted crack growth rate of an austenitic steel TP347HFG in high-temperature medium [J]. Mater. Corros., 2018, 69: 1064
17 Shen Z, Zhang L F, Tang R, et al. The effect of temperature on the SSRT behavior of austenitic stainless steels in SCW [J]. J. Nucl. Mater., 2014, 454: 274
18 Khan H I, Zhang N Q, Zhu Z L, et al. Behavior and susceptibility to stress corrosion cracking of a nickel-based alloy in superheated steam and supercritical water [J]. Mater. Corros., 2019, 70: 48
19 Peng Q J, Teysseyre S, Andresen P L, et al. Stress corrosion crack growth in type 316 stainless steel in supercritical water [J]. Corrosion, 2007, 63: 1033
20 Lee H J, Kim H, Kim S H, et al. Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment [J]. Corros. Sci., 2015, 99: 227
21 Pint B A, Brese R G, Keiser J R. Effect of pressure on supercritical CO2 compatibility of structural alloys at 750  oC [J]. Mater. Corros., 2017, 68: 151
22 Kim S H, Kim C, Subramanian G O, et al. Corrosion and carburization behaviour of Ni-Cr-Mo-Nb superalloys in a high temperature supercritical-CO2 environment [A]. OttE, LiuX B, AnderssonJ, et al. Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications [M]. Cham: Springer, 2018: 179
23 Gui Y, Liang Z Y, Wang S, et al. Corrosion behavior of T91 tubing in high temperature supercritical carbon dioxide environment [J]. Corros. Sci., 2023, 211: 110857
24 Behnamian Y, Mostafaei A, Kohandehghan A, et al. Internal oxidation and crack susceptibility of alloy 310S stainless steel after long term exposure to supercritical water at 500 oC [J]. J. Supercrit. Fluids, 2017, 120: 161
25 Delkasar Maher S, Sarvghad M, Olivares R, et al. Critical components in supercritical CO2 Brayton cycle power blocks for solar power systems: degradation mechanisms and failure consequences [J]. Sol. Energy Mater. Sol. Cells, 2022, 242: 111768
26 Keiser J R, Mcdowell M, Leonard D N. Corrosion of Fe-and Ni-base alloys in 200 bar, 750 oC supercritical carbon dioxide [A]. Proceedings of the Corrosion 2017 [C]. New Orleans, 2017
27 Lv Z P. Mechanisms and growth rate models for stress corrosion cracking in high temperature water [J]. Mater. China, 2019, 38: 651
吕战鹏. 高温水中应力腐蚀开裂机理及扩展模型 [J]. 中国材料进展, 2019, 38: 651
28 Chen K, Wang J M, Shen Z, et al. Effect of intergranular carbides on the cracking behavior of cold worked alloy 690 in subcritical and supercritical water [J]. Corros. Sci., 2020, 164: 108313
29 Dai Z Y, Su Y H, Yang T S, et al. Study on the high temperature creep deformation and fracture behaviors of Inconel 625 deposited metal [J]. Mater. Sci. Eng., 2022, 854A: 143626
30 Kim S H, Cha J H, Jang C. Corrosion and creep behavior of a Ni-base alloy in supercritical-carbon dioxide environment at 650 oC [J]. Corros. Sci., 2020, 174: 108843
31 Chopra O K, Stevens G L, Tregoning R, et al. Effect of light water reactor water environments on the fatigue life of reactor materials [J]. J. Press. Vessel Technol., 2017, 139: 060801
32 ASTM. Standard Terminology Relating to Fatigue and Fracture Testing [M]. 2000: 19428
33 Larrosa N O, Akid R, Ainsworth R A. Corrosion-fatigue: a review of damage tolerance models [J]. Int. Mater. Rev., 2018, 63: 283
34 Zhang Z Y, Wu X Q, Han E-H, et al. A review on corrosion fatigue crack growth behavior of structural materials in nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 9
张兹瑜, 吴欣强, 韩恩厚 等. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展 [J]. 中国腐蚀与防护学报, 2022, 42: 9
doi: 10.11902/1005.4537.2021.094
35 Song Y D, Ling C, Zhang L C, et al. Research progress on hot corrosion-fatigue of aero-engine and gas turbine hot-section components [J]. J. Nanjing Univ. Aeronaut. Astronaut., 2022, 54: 771
宋迎东, 凌 晨, 张磊成 等. 航空发动机和燃气轮机热端部件热腐蚀-疲劳研究进展 [J]. 南京航空航天大学学报, 2022, 54: 771
36 Xu S, Wu X Q, Han E-H, et al. A review of corrosion fatigue of steels for lwr plant in high temperature and high pressure water [J]. Corros. Sci. Prot. Technol., 2007, 19: 345
徐 松, 吴欣强, 韩恩厚 等. 核电站用钢的高温高压水腐蚀疲劳研究进展 [J]. 腐蚀科学与防护技术, 2007, 19: 345
37 Rozman K A, Holcomb G R, Carney C S, et al. Effect of 730 oC supercritical fluid exposure on the fatigue threshold of Ni-based superalloy haynes 282 [J]. J. Mater. Eng. Perform., 2019, 28: 4335
doi: 10.1007/s11665-019-04164-2
38 Thatte A, Martin E, Hanlon T. A novel experimental method for LCF measurement of nickel base super alloys in high pressure high temperature supercritical CO2 [A]. Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition [C]. Charlotte, 2017
39 Chen H Z, Li B R, Wen B, et al. Corrosion resistance of iron-chromium-aluminium steel in eutectic molten salts under thermal cycling conditions [J]. Corros. Sci., 2020, 173: 108798
40 Zhang N Q, Zhu Z L, Yue G Q, et al. The oxidation behaviour of an austenitic steel in deaerated supercritical water at 600-700 oC [J]. Mater. Charact., 2017, 132: 119
41 Pint B A, Raiman S S, Keiser J R. Lifetime modeling for a supercritical CO2-molten salt CSP power block [A]. Proceedings of the SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems [C]. Casablanca, 2019
42 Bian W W, Lu Y H, Zhang X F, et al. Effect of fretting wear regimes on stress corrosion cracking of Alloy 690TT in high-temperature pressurized water [J]. Corros. Sci., 2024, 237: 112320
43 Chen K, Wang J, Zhang L, et al. A high-resolution study of the different surface state effects on the corrosion behaviors of a ferritic steel and an austenitic steel in supercritical water [J]. Corros. Sci., 2022, 209: 110757
44 Wang Y, Shen Z, Jia H D, et al. The effect of surface grinding and Si addition on the corrosion of Fe-12Cr ODS steels in supercritical CO2 [J]. Corros. Sci., 2023, 224: 111533
45 Qian H C, Yang L J, Feng X Y, et al. The effect of surface grinding on the stress corrosion cracking initiation of 316LN stainless steel in 600  oC supercritical CO2 [J]. Corros. Sci., 2024, 234: 112147
46 Chen K, Liu Z, Guo X L, et al. Effect of surface finishing on the oxidation characteristics of a Fe-21Cr-32Ni alloy in supercritical carbon dioxide [J]. Corros. Sci., 2022, 195: 110019
47 Wang Y, Li K X, Zhou Z J, et al. The surface grinding-induced oxide scale exfoliation of an austenitic alloy in supercritical CO2 [J]. Corros. Sci., 2023, 225: 111615
[1] ZHANG Zhuanli, DAI Hailong, ZHANG Zhe, SHI Shouwen, CHEN Xu. Stress Corrosion Cracking Behavior of 316L in Hydrofluoric Acid Solution[J]. 中国腐蚀与防护学报, 2024, 44(6): 1633-1640.
[2] SU Zhicheng, ZHANG Xian, CHENG Yan, LIU Jing, WU Kaiming. Comparative Study on Stress Corrosion Cracking Behavior of Ultrafine Bainitic Steel and Q&P Steel with Same Composition in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[3] ZHAO Qian, ZHANG Jie, MAO Ruirui, MIAO Chunhui, BIAN Yafei, TENG Yue, TANG Wenming. Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[4] LIU Guangsheng, WANG Weijun, ZHOU Pei, TAN Jinhao, DING Hongxin, ZHANG Wei, XIANG Yong. Corrosion Behavior of Casing Steels 13Cr and N80 During Sequestration in an Impure Carbon Dioxide Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1200-1212.
[5] LIU Jiuyun, DONG Lijin, ZHANG Yan, WANG Qinying, LIU Li. Research Progress on Sulfide Stress Corrosion Cracking of Dissimilar Weld Joints in Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[6] HU Lihua, YI Hualei, YANG Weijian, SUN Chong, SUN Jianbo. Effect of Water Content on Corrosion Behavior of X65 Pipeline Steel in Supercritical CO2 Fluids[J]. 中国腐蚀与防护学报, 2024, 44(3): 576-584.
[7] LI Chan, WANG Qingtian, YANG Chenggang, ZHANG Xianwei, HAN Dongao, LIU Yuwei, LIU Zhiyong. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[8] CEN Yuanyao, LIAO Guangmeng, ZHU Yuqin, ZHAO Fangchao, LIU Cong, HE Jianxin, ZHOU Kun. Monitoring Technology for Stress Corrosion Crack Propagation of Al-alloy Based on Optical Fiber Bragg Grating[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[9] YUAN Yu, XIANG Yong, LI Chen, ZHAO Xuehui, YAN Wei, YAO Erdong. Research Progress on Corrosion of CO2 Injection Well Tubing in CCUS System[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[10] LI Shuang, DONG Lijin, ZHENG Huaibei, WU Chengchuan, WANG Hongli, LING Dong, WANG Qinying. Research Progress of Stress Corrosion Cracking of Ultra-high Strength Steels for Aircraft Landing Gear[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[11] LI Jiayuan, ZENG Tianhao, LIU Youtong, WU Xiaochun. Corrosion Behavior of 4Cr16Mo Martensite Stainless Steel with 1% Cu Addition by Applied Stress[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[12] LI Wenju, ZHANG Huixia, ZHANG Hongquan, HAO Fuyao, TONG Hongtao. Effect of Temperature on Stress Corrosion Behavior of Ti-alloy Ti80 in Sea Water[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[13] LI Kexuan, SONG Longfei, LI Xiaorong. Effect of pH on Electrochemical Corrosion and Stress Corrosion Behavior of X100 Pipeline Steel in CO32-/HCO3- Solutions[J]. 中国腐蚀与防护学报, 2022, 42(5): 779-784.
[14] LIU Yutong, CHEN Zhenyu, ZHU Zhongliang, FENG Rui, BAO Hansheng, ZHANG Naiqiang. SCC Susceptibility of 2.25Cr1Mo Steel and Its Weld Joints in High Temperature Steam[J]. 中国腐蚀与防护学报, 2022, 42(4): 647-654.
[15] GAO Qiuying, XU Yixuan, HU Pengwei, YAO Tianwan, QI Wenlong. Corrosion and Protection Technique of Regeneration Tower Bottom Reboiler in Natural Gas Purification Unit[J]. 中国腐蚀与防护学报, 2022, 42(4): 699-704.
No Suggested Reading articles found!