|
|
Research Progress of Environmental Cracking of Structural Metallic Materials for High Temperature Supercritical CO2 System |
LI Kaiyang, WU You, ZHANG Guanlin, ZHANG Naiqiang( ) |
College of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China |
|
Cite this article:
LI Kaiyang, WU You, ZHANG Guanlin, ZHANG Naiqiang. Research Progress of Environmental Cracking of Structural Metallic Materials for High Temperature Supercritical CO2 System. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 61-68.
|
Abstract As a new energy transfer medium, supercritical CO2 (S-CO2) has shown broad application prospects in the field of energy. However, supercritical CO2 can induce high temperature corrosion of structural metallic materials as high-temperature oxidation and carburization. The synergistic effect of corrosion and stress can aggravate the corrosion of metallic materials and deteriorate their mechanical property, accelerate their degradation, and even induce environmental cracking, all of which result in serious consequences. Therefore, this article elucidates the supercritical CO2-induced oxidation and carburization, and their coupled effect; summarizes the methods to evaluate the environmental cracking induced by synergistic effect of corrosion and stress in high-temperature high-pressure supercritical CO2 environments; analyzes metallic material performances under the synergistic effect of corrosion and stress, including the change of mechanical property after corrosion, stress corrosion cracking, creep, corrosion fatigue, thermal cycling and effect of surface residual stress on corrosion, etc.; and sums up the behavior and mechanisms of environmental cracking of metallic materials. It is intended to provide theoretical guidance and technical support for the material selection and environmental cracking prevention in supercritical CO2 systems.
|
Received: 30 August 2024
32134.14.1005.4537.2024.280
|
|
Fund: National Natural Science Foundation of China(52071140; 52401089);Natural Science Foundation of Beijing(2244104) |
Corresponding Authors:
ZHANG Naiqiang, E-mail: zhnq@ncepu.edu.cn
|
1 |
White M T, Bianchi G, Chai L, et al. Review of supercritical CO2 technologies and systems for power generation [J]. Appl. Therm. Eng., 2021, 185: 116447
|
2 |
Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development [J]. Nucl. Eng. Technol., 2015, 47: 647
|
3 |
Xiang Y, Xu M H, Choi Y S. State-of-the-art overview of pipeline steel corrosion in impure dense CO2 for CCS transportation: mechanisms and models [J]. Corros. Eng. Sci. Technol., 2017, 52: 485
|
4 |
Sun C, Wang Y, Sun J B, et al. Investigation progress on corrosion behavior of supercritical CO2 transmission pipelines containing impurities in CCS [J]. J.Chin. Soc. Corros. Prot., 2015, 35: 379
|
|
孙 冲, 王 勇, 孙建波 等. 含杂质超临界CO2输送管线腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2015, 35: 379
|
5 |
Gui Y, Liang Z Y, Guo T S, et al. Corrosion behavior of heat-resistant materials in supercritical carbon dioxide environment [J]. J. Chin. Soc. Power Eng., 2021, 41: 602
|
|
桂 雍, 梁志远, 郭亭山 等. 超临界二氧化碳环境中耐热材料的腐蚀行为研究 [J]. 动力工程学报, 2021, 41: 602
|
6 |
Xiao B, Li K Y, Wang B H, et al. Corrosion behavior of various high-temperature materials in supercritical carbon dioxide [J]. Proc. CSEE, 2023, 43: 4198
|
|
肖 博, 李开洋, 王碧辉 等. 多种高温金属材料在超临界二氧化碳中的腐蚀行为 [J]. 中国电机工程学报, 2023, 43: 4198
|
7 |
Liang Z Y, Gui Y, Zhao Q X. Research progress on corrosion of high-temperature materials in supercritical CO2 power cycle [J]. J. Chin. Soc. Power Eng., 2021, 41: 910
|
|
梁志远, 桂 雍, 赵钦新. 超临界CO2动力循环高温材料腐蚀研究进展 [J]. 动力工程学报, 2021, 41: 910
doi: 10.19805/j.cnki.jcspe.2021.11.002
|
8 |
Xiao B, Zhu Z L, Li R T, et al. Research status of high temperature corrosion of candidate materials for power generation system using supercritical carbon dioxide as working fluid [J]. Therm. Power Gener., 2020, 49(10): 30
|
|
肖 博, 朱忠亮, 李瑞涛 等. 超临界二氧化碳工质发电系统候选材料高温腐蚀研究现状与进展 [J]. 热力发电, 2020, 49(10): 30
|
9 |
Li K Y, Zhu Z L, Xiao B, et al. State of the art overview material degradation in high-temperature supercritical CO2 environments [J]. Prog. Mater. Sci., 2023, 136: 101107
|
10 |
Liu Z, Long J C, Su H Z, et al. Understanding the stress corrosion cracking growth mechanism of a cold worked alumina-forming austenitic steel in supercritical carbon dioxide [J]. Corros. Sci., 2022, 199: 110179
|
11 |
Gheno T, Monceau D, Zhang J Q, et al. Carburisation of ferritic Fe-Cr alloys by low carbon activity gases [J]. Corros. Sci., 2011, 53: 2767
|
12 |
Sarrade S, Féron D, Rouillard F, et al. Overview on corrosion in supercritical fluids [J]. J. Supercrit. Fluids, 2017, 120: 335
|
13 |
Liu B P, Zhang Z M, Wang J Q, et al. Review of stress corrosion crack initiation of nuclear structural materials in high temperature and high pressure water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 513
|
|
刘保平, 张志明, 王俭秋 等. 核用结构材料在高温高压水中应力腐蚀裂纹萌生研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 513
doi: 10.11902/1005.4537.2021.130
|
14 |
Zhang N Q, Yue G Q, Lv F B, et al. Crack growth rate of stress corrosion cracking of Inconel625 in high temperature steam [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 9
|
|
张乃强, 岳国强, 吕法彬 等. Inconel625合金在高温水蒸气环境中应力腐蚀开裂裂纹扩展速率研究 [J]. 中国腐蚀与防护学报, 2017, 37: 9
doi: 10.11902/1005.4537.2016.088
|
15 |
Seifert H P, Ritter S, Shoji T, et al. Environmentally-assisted cracking behaviour in the transition region of an Alloy182/SA 508 Cl.2 dissimilar metal weld joint in simulated boiling water reactor normal water chemistry environment [J]. J. Nucl. Mater., 2008, 378: 197
|
16 |
Khan H I, Zhang N Q, Yue G Q, et al. Environmentally assisted crack growth rate of an austenitic steel TP347HFG in high-temperature medium [J]. Mater. Corros., 2018, 69: 1064
|
17 |
Shen Z, Zhang L F, Tang R, et al. The effect of temperature on the SSRT behavior of austenitic stainless steels in SCW [J]. J. Nucl. Mater., 2014, 454: 274
|
18 |
Khan H I, Zhang N Q, Zhu Z L, et al. Behavior and susceptibility to stress corrosion cracking of a nickel-based alloy in superheated steam and supercritical water [J]. Mater. Corros., 2019, 70: 48
|
19 |
Peng Q J, Teysseyre S, Andresen P L, et al. Stress corrosion crack growth in type 316 stainless steel in supercritical water [J]. Corrosion, 2007, 63: 1033
|
20 |
Lee H J, Kim H, Kim S H, et al. Corrosion and carburization behavior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment [J]. Corros. Sci., 2015, 99: 227
|
21 |
Pint B A, Brese R G, Keiser J R. Effect of pressure on supercritical CO2 compatibility of structural alloys at 750 oC [J]. Mater. Corros., 2017, 68: 151
|
22 |
Kim S H, Kim C, Subramanian G O, et al. Corrosion and carburization behaviour of Ni-Cr-Mo-Nb superalloys in a high temperature supercritical-CO2 environment [A]. OttE, LiuX B, AnderssonJ, et al. Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications [M]. Cham: Springer, 2018: 179
|
23 |
Gui Y, Liang Z Y, Wang S, et al. Corrosion behavior of T91 tubing in high temperature supercritical carbon dioxide environment [J]. Corros. Sci., 2023, 211: 110857
|
24 |
Behnamian Y, Mostafaei A, Kohandehghan A, et al. Internal oxidation and crack susceptibility of alloy 310S stainless steel after long term exposure to supercritical water at 500 oC [J]. J. Supercrit. Fluids, 2017, 120: 161
|
25 |
Delkasar Maher S, Sarvghad M, Olivares R, et al. Critical components in supercritical CO2 Brayton cycle power blocks for solar power systems: degradation mechanisms and failure consequences [J]. Sol. Energy Mater. Sol. Cells, 2022, 242: 111768
|
26 |
Keiser J R, Mcdowell M, Leonard D N. Corrosion of Fe-and Ni-base alloys in 200 bar, 750 oC supercritical carbon dioxide [A]. Proceedings of the Corrosion 2017 [C]. New Orleans, 2017
|
27 |
Lv Z P. Mechanisms and growth rate models for stress corrosion cracking in high temperature water [J]. Mater. China, 2019, 38: 651
|
|
吕战鹏. 高温水中应力腐蚀开裂机理及扩展模型 [J]. 中国材料进展, 2019, 38: 651
|
28 |
Chen K, Wang J M, Shen Z, et al. Effect of intergranular carbides on the cracking behavior of cold worked alloy 690 in subcritical and supercritical water [J]. Corros. Sci., 2020, 164: 108313
|
29 |
Dai Z Y, Su Y H, Yang T S, et al. Study on the high temperature creep deformation and fracture behaviors of Inconel 625 deposited metal [J]. Mater. Sci. Eng., 2022, 854A: 143626
|
30 |
Kim S H, Cha J H, Jang C. Corrosion and creep behavior of a Ni-base alloy in supercritical-carbon dioxide environment at 650 oC [J]. Corros. Sci., 2020, 174: 108843
|
31 |
Chopra O K, Stevens G L, Tregoning R, et al. Effect of light water reactor water environments on the fatigue life of reactor materials [J]. J. Press. Vessel Technol., 2017, 139: 060801
|
32 |
ASTM. Standard Terminology Relating to Fatigue and Fracture Testing [M]. 2000: 19428
|
33 |
Larrosa N O, Akid R, Ainsworth R A. Corrosion-fatigue: a review of damage tolerance models [J]. Int. Mater. Rev., 2018, 63: 283
|
34 |
Zhang Z Y, Wu X Q, Han E-H, et al. A review on corrosion fatigue crack growth behavior of structural materials in nuclear power plants [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 9
|
|
张兹瑜, 吴欣强, 韩恩厚 等. 核电结构材料腐蚀疲劳裂纹扩展行为研究现状与进展 [J]. 中国腐蚀与防护学报, 2022, 42: 9
doi: 10.11902/1005.4537.2021.094
|
35 |
Song Y D, Ling C, Zhang L C, et al. Research progress on hot corrosion-fatigue of aero-engine and gas turbine hot-section components [J]. J. Nanjing Univ. Aeronaut. Astronaut., 2022, 54: 771
|
|
宋迎东, 凌 晨, 张磊成 等. 航空发动机和燃气轮机热端部件热腐蚀-疲劳研究进展 [J]. 南京航空航天大学学报, 2022, 54: 771
|
36 |
Xu S, Wu X Q, Han E-H, et al. A review of corrosion fatigue of steels for lwr plant in high temperature and high pressure water [J]. Corros. Sci. Prot. Technol., 2007, 19: 345
|
|
徐 松, 吴欣强, 韩恩厚 等. 核电站用钢的高温高压水腐蚀疲劳研究进展 [J]. 腐蚀科学与防护技术, 2007, 19: 345
|
37 |
Rozman K A, Holcomb G R, Carney C S, et al. Effect of 730 oC supercritical fluid exposure on the fatigue threshold of Ni-based superalloy haynes 282 [J]. J. Mater. Eng. Perform., 2019, 28: 4335
doi: 10.1007/s11665-019-04164-2
|
38 |
Thatte A, Martin E, Hanlon T. A novel experimental method for LCF measurement of nickel base super alloys in high pressure high temperature supercritical CO2 [A]. Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition [C]. Charlotte, 2017
|
39 |
Chen H Z, Li B R, Wen B, et al. Corrosion resistance of iron-chromium-aluminium steel in eutectic molten salts under thermal cycling conditions [J]. Corros. Sci., 2020, 173: 108798
|
40 |
Zhang N Q, Zhu Z L, Yue G Q, et al. The oxidation behaviour of an austenitic steel in deaerated supercritical water at 600-700 oC [J]. Mater. Charact., 2017, 132: 119
|
41 |
Pint B A, Raiman S S, Keiser J R. Lifetime modeling for a supercritical CO2-molten salt CSP power block [A]. Proceedings of the SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems [C]. Casablanca, 2019
|
42 |
Bian W W, Lu Y H, Zhang X F, et al. Effect of fretting wear regimes on stress corrosion cracking of Alloy 690TT in high-temperature pressurized water [J]. Corros. Sci., 2024, 237: 112320
|
43 |
Chen K, Wang J, Zhang L, et al. A high-resolution study of the different surface state effects on the corrosion behaviors of a ferritic steel and an austenitic steel in supercritical water [J]. Corros. Sci., 2022, 209: 110757
|
44 |
Wang Y, Shen Z, Jia H D, et al. The effect of surface grinding and Si addition on the corrosion of Fe-12Cr ODS steels in supercritical CO2 [J]. Corros. Sci., 2023, 224: 111533
|
45 |
Qian H C, Yang L J, Feng X Y, et al. The effect of surface grinding on the stress corrosion cracking initiation of 316LN stainless steel in 600 oC supercritical CO2 [J]. Corros. Sci., 2024, 234: 112147
|
46 |
Chen K, Liu Z, Guo X L, et al. Effect of surface finishing on the oxidation characteristics of a Fe-21Cr-32Ni alloy in supercritical carbon dioxide [J]. Corros. Sci., 2022, 195: 110019
|
47 |
Wang Y, Li K X, Zhou Z J, et al. The surface grinding-induced oxide scale exfoliation of an austenitic alloy in supercritical CO2 [J]. Corros. Sci., 2023, 225: 111615
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|