Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (1): 69-80    DOI: 10.11902/1005.4537.2024.239
Current Issue | Archive | Adv Search |
Preparation and Microstructure of Diffused Ti-Al-Si Coatings on Ti-6Al-4V Alloy
LIU Guoqiang1, FENG Changjie2, XIN Li1(), MA Tianyu1,3, CHANG Hao1, PAN Yuxuan1, ZHU Shenglong1
1 Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science & Engineering, Shenyang Aerospace University, Shenyang 110136, China
3 School of Materials Science &Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

LIU Guoqiang, FENG Changjie, XIN Li, MA Tianyu, CHANG Hao, PAN Yuxuan, ZHU Shenglong. Preparation and Microstructure of Diffused Ti-Al-Si Coatings on Ti-6Al-4V Alloy. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 69-80.

Download:  HTML  PDF(21290KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Al-Si coatings with different Si content were deposited on the surface of Ti-6Al-4V alloy by multi-arc ion plating, then vacuum annealing treatment of the coated alloy were carried out at different temperatures in the range 600~900 oC. Finally, diffused Ti-Al-(Si) coatings of different microstructure were obtained. The results showed that the diffused coatings obtained by annealing at 650 oC were single layer coatings mainly composed of TiAl3. Si substituted for Al atoms in the TiAl3 lattice and formed Ti(Al, Si)3 solid solution. When the Si content in the coating exceeded 15% (atomic fraction), the solid solubility limit of Si in TiAl3 lattice, Ti-Al-Si ternary compounds precipitated, forming multi-phase coating with Ti(Al, Si)3. Penetrating cracks formed for all the single layer coatings. The diffused coatings obtained by annealing at 800 oC and 900 ℃ exhibited a multilayered structure, where, the outmost layer was mainly composed of TiAl3 and Si was dissolved in the TiAl3. When the Si content was high in the coatings, Ti-Si binary and/or Ti-Al-Si ternary compounds precipitated and the amount of the precipitates increased with the increasing of annealing temperature. Intermediate layers between the TiAl3 layer and the Ti-alloy substrate were composed of one or two of the TiAl2, TiAl, Ti3Al, Ti5Si3 and Ti5Si4 layers. The multilayered structure can obviously suppress the formation of penetrating cracks on the diffused Ti-Al-Si coatings.

Key words:  Si modified aluminide coating      Ti-alloy      vacuum annealing treatment      diffusion      microstructure     
Received:  01 August 2024      32134.14.1005.4537.2024.239
ZTFLH:  TG174.4  
Fund: National Natural Science Foundation of China(52371085);Liaoning Revitalization Talents Program(XLYC2002031)
Corresponding Authors:  XIN Li, E-mail: xli@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.239     OR     https://www.jcscp.org/EN/Y2025/V45/I1/69

Fig.1  XRD pattern of 25.7Si coated Ti-6Al-4V after vacuum annealing at 600 oC for 7 h
Fig.2  SEM surface (a, b) and cross-sectional (c, d) morphologies of 25.7Si coated Ti-6Al-4V before (a, c) and after (b, d) vacuum annealing at 600 oC for 7 h
ZonesAlSiTiV
198.590.900.51-
245.2630.1324.040.57
356.0519.3524.140.46
414.8251.0333.370.78
542.0732.0622.703.17
615.4212.2170.731.64
Table 1  EDS analysis results of the zones marked by 1-6 in Fig.2
Fig.3  Calculated isothermal section of Ti-Al-Si system at 600 oC
Fig.4  XRD patterns of 0Si-650, 5.2Si-650, 12.5Si-650 and 25.7Si-650 coatings
Fig.5  Surface (a-d) and cross-sectional (e-h) morphologies and EDS elemental line scanning results for 0Si-650 (a, e), 5.2Si-650 (b, f), 12.5Si-650 (c, g) and 25.7Si-650 (d, h) coatings
ZonesAlSiTiV
174.76-24.111.13
271.023.7623.971.25
364.5410.7523.970.74
459.7015.5823.820.90
553.8519.8225.321.01
636.7334.2328.011.03
734.6435.6428.990.73
860.1913.9125.020.88
916.144.9273.765.18
Table 2  EDS determined compositions of the zones marked by 1-9 in Fig.5
Fig.6  Calculated isothermal section of Ti-Al-Si system at 650 oC
Fig.7  XRD patterns of 0Si-800, 5.2Si-800, 12.5Si-800 and 25.7Si-800 coatings
Fig.8  Surface (a-d) and cross-sectional (e-h) morphologies and EDS elemental line scanning results for 0Si-800 (a, e), 5.2Si-800 (b, f), 12.5Si-800 (c, g) and 25.7Si-800 (d, h) coatings
ZonesAlSiTiV
174.40-24.311.29
265.17-33.601.23
345.49-51.872.64
416.95-80.462.59
569.254.3925.610.75
656.972.9137.592.53
730.260.5666.452.73
815.720.2481.492.55
963.979.8625.011.16
1060.5412.0525.961.45
1151.996.8938.422.70
1225.490.7971.432.29
1362.5712.3824.070.98
1461.5211.7426.040.70
1544.0223.6330.891.46
1613.3836.1648.292.17
Table 3  EDS determined compositions of the zones marked by 1-16 in Fig.8
Fig.9  Calculated isothermal section of Ti-Al-Si system at 800 oC
Fig.10  XRD patterns of 0Si-900, 5.2Si-900, 12.5Si-900and 25.7Si-900 coatings
Fig.11  Surface (a-d) and cross-sectional (e-h) morphologies and EDS elemental maps for 0Si-900 (a, e), 5.2Si-900 (b, f), 12.5Si-900 (c, g) and 25.7Si-900 (d, h) coatings
ZonesAlSiTiV
174.71-24.241.05
266.59-32.361.05
355.26-42.342.40
426.40-71.242.36
566.554.0828.071.30
659.702.9835.282.04
748.861.4647.322.36
821.990.7374.782.50
967.804.8126.550.84
1049.5611.3136.912.22
1143.474.9748.972.59
1220.960.9575.852.24
1361.609.9525.582.87
1433.3828.4336.471.72
1560.7910.0927.621.50
1633.5228.1637.380.94
177.1832.9457.842.04
Table 4  EDS determined compositions of the zones mark-ed by 1-17 in Fig.11 (atomic fraction / %)
Fig.12  Calculated isothermal section of Ti-Al-Si system at 900 oC
1 Amigó-Borrás V, Lario-Femenía J, Amigó-Mata A, et al. Titanium, titanium alloys and composites [J]. Encycl. Mater., 2022, 1: 179
2 Peters M, Kumpfert J, Ward C H, et al. Titanium alloys for aerospace applications [J]. Adv. Eng. Mater., 2003, 5: 419
3 Pushp P, Dasharath S M, Arati C. Classification and applications of titanium and its alloys [J]. Mater. Today, 2022, 54: 537
4 Ebach-Stahl A, Eilers C, Laska N, et al. Cyclic oxidation behaviour of the titanium alloys Ti-6242 and Ti-17 with Ti-Al-Cr-Y coatings at 600 and 700 oC in air [J]. Surf. Coat. Technol., 2013, 223: 24
5 Berthaud M, Popa I, Chassagnon R, et al. Study of titanium alloy Ti6242S oxidation behaviour in air at 560 oC: effect of oxygen dissolution on lattice parameters [J]. Corros. Sci., 2020, 164: 108049
6 Dai J J, Zhu J Y, Chen C Z, et al. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: a review [J]. J. Alloy. Compd., 2016, 685: 784
7 Vaché N, Cadoret Y, Dod B, et al. Modeling the oxidation kinetics of titanium alloys: review, method and application to Ti-64 and Ti-6242s alloys [J]. Corros. Sci., 2021, 178: 109041
8 Parthasarathy T A, Porter W J, Boone S, et al. Life prediction under tension of titanium alloys that develop an oxygenated brittle case during use [J]. Scr. Mater., 2011, 65: 420
9 Tsipas S A, Gordo E, Jiménez-Morales A. Oxidation and corrosion protection by halide treatment of powder metallurgy Ti and Ti6Al4V alloy [J]. Corros. Sci., 2014, 88: 263
10 Patel P, Jamnapara N I, Zala A, et al. Investigation of hot-dip aluminized Ti6Al4V alloy processed by different thermal treatments in an oxidizing atmosphere [J]. Surf. Coat. Technol., 2020, 385: 125323
11 Sitek R, Kaminski J, Borysiuk J, et al. Microstructure and properties of titanium aluminides on Ti6Al4V titanium alloy produced by chemical vapor deposition method [J]. Intermetallics, 2013, 36: 36
12 Trivedi S P, Das D K. Microstructural aspects of plain aluminide and Pt-aluminide coatings on Ti-base alloy IMI-834 [J]. Intermetallics, 2005, 13: 1122
13 Tian H, Zhou K, Zou Y C, et al. Microstructure and high temperature oxidation resistance property of packing Al cementation on Ti-Al-Zr alloy [J]. Surf. Coat. Technol., 2019, 374: 1051
14 Alam M Z, Das D K. Effect of cracking in diffusion aluminide coatings on their cyclic oxidation performance on Ti-based IMI-834 alloy [J]. Corros. Sci., 2009, 51: 1405
15 McMordie B G. Oxidation resistance of slurry aluminides on high temperature titanium alloys [J]. Surf. Coat. Technol., 1991, 49: 18
16 Wang D Q, Shi Z Y, Teng Y L. Microstructure and oxidation of hot-dip aluminized titanium at high temperature [J]. Appl. Surf. Sci., 2005, 250: 238
17 Cammarota G P, Casagrande A, Sambogna G. Effect of Ni, Si and Cr in the structural formation of diffusion aluminide coatings on commercial-purity titanium [J]. Surf. Coat. Technol., 2006, 201:230
18 Hu X Y, Li F G, Shi D M, et al. A design of self-generated Ti-Al-Si gradient coatings on Ti-6Al-4V alloy based on silicon concentration gradient [J]. J. Alloy. Compd., 2020, 830: 154670
19 Oukati Sadeq F, Sharifitabar M, Shafiee Afarani M. Synthesis of Ti-Si-Al coatings on the surface of Ti-6Al-4V alloy via hot dip siliconizing route [J]. Surf. Coat. Technol., 2018, 337: 349
20 Kubatík T F. High-temperature oxidation of silicide-aluminide layer on the TiAl6V4 alloy prepared by liquid-phase siliconizing [J]. Mater. Tehnol., 2016, 50: 257
21 Vojtěch D, Kubatík T, Pavlíčková M, et al. Intermetallic protective coatings on titanium [J]. Intermetallics, 2006, 14: 1181
22 Xiong H P, Mao W, Ma W L, et al. Liquid-phase aluminizing and siliconizing at the surface of a Ti60 alloy and improvement in oxidation resistance [J]. Mater. Sci. Eng., 2006, 433A: 108
23 Gupta S P. Intermetallic compounds in diffusion couples of Ti with an Al-Si eutectic alloy [J]. Mater. Charact., 2002, 49: 321
24 Zhu G L, Shu D, Dai Y B, et al. First principles study on the substitution behavior of Si in TiAl3 [J]. Acta Phys. Sin., 2009, 58(suppl.): 210
祝国梁, 疏 达, 戴永兵 等. Si在TiAl3中取代行为的第一性原理研究 [J]. 物理学报, 2009, 58(): 210
25 Brukl C, Nowotny H, Schob O, et al. Die Kristallstruckturen von TiSi, Ti(Al, Si)2 und Mo(Al, Si)2 [J]. Monatshefte für Chemie, 1961, 92(3): 781
26 Rao K P, Zhou J B. Characterization of mechanically alloyed Ti-Al-Si powder blends and their subsequent thermal stability [J]. Mater. Sci. Eng., 2002, 338A: 282
27 Dai J J, Zhang F Y, Wang A M, et al. Microstructure and properties of Ti-Al coating and Ti-Al-Si system coatings on Ti-6Al-4V fabricated by laser surface alloying [J]. Surf. Coat. Technol., 2017, 309: 805
28 Zhang Z G, Peng Y P, Mao Y L, et al. Effect of hot-dip aluminizing on the oxidation resistance of Ti-6Al-4V alloy at high temperatures [J]. Corros. Sci., 2012, 55: 187
29 Benci J E, Ma J C, Feist T P. Evaluation of the intermetallic compound Al2Ti for elevated-temperature applications [J]. Mater. Sci. Eng., 1995, 192-193A: 38
30 Shashikala H D, Suryanarayana S V, Murthy K S N, et al. Thermal expansion characteristics of Ti3Al and the effect of additives [J]. J. Less-Common Met., 1989, 155: 23
31 Vojtěch D, Bártová B, Kubatı́K T. High temperature oxidation of titanium-silicon alloys [J]. Mater. Sci. Eng., 2003, 361A: 50
32 Zhang Y K, Lei Y, Ma W H, et al. Evaluation of thermal conductivities and thermal expansion coefficients of TiSi2 and Ti5Si3 ceramics prepared from Ti- and Si-rich wastes [J]. Ceram. Int., 2024, 50: 3373
[1] LI Hanye, ZHANG Zhichao, WANG Qunchang, GU Yan, CHEN Zehao, YANG Shasha, MEI Feiqiang. Formation Mechanism of Residue Water Stains on TC4 Ti-alloy Surface and Conter-measures[J]. 中国腐蚀与防护学报, 2025, 45(1): 244-248.
[2] XU Xiwen, SHU Xiaoyong, CHEN Zhiqun, HE Hairui, DONG Shuhe, FANG Yuqing, PENG Xiao. Oxidation Behavior of CVD Aluminized Coatings on DD6 Single Crystal Ni-based Superalloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 148-154.
[3] LI Kaiyang, ZHAI Yunlong, HU Xinyu, WU Hong, LIU Bin, XING Shaohua, HOU Jian, ZHANG Fan, ZHANG Naiqiang. Research Progress on High Temperature Corrosion of Eutectic High Entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[4] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[5] ZHANG Yani, WANG Simin, FAN Bing. Corrosion and Passivation Behavior of TC4 Ti-alloy in a Simulated Downhole Liquid in High-temperature and High-pressed O2 + CO2 Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[6] WU Liangliang, YIN Ruozhan, CHEN Zhaoxu, LIANG Junyue, SUN Qingqing, WU Liankui, CAO Fahe. Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[7] CHENG Xueyu, YE Huan, GUO Chenghao, LU Lixin, LI Weizhe. Molecular Dynamics Simulation of Diffusion Behavior of Benzotriazole and Sodium Benzoate in Volatile Corrosion Inhibitor Film[J]. 中国腐蚀与防护学报, 2024, 44(5): 1323-1331.
[8] CHENG Yonghe, FU Junwei, ZHAO Maomi, SHEN Yunjun. Research Progress on Corrosion Resistance of High-entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[9] ZHAO Qian, ZHANG Jie, MAO Ruirui, MIAO Chunhui, BIAN Yafei, TENG Yue, TANG Wenming. Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[10] LI Jiaheng, QIAN Wei, ZHU Jingjing, CAI Jie, HUA Yinqun. Influence of Laser Shock Peening on Microstructure and Oxidation Performance of Nickel-based Single Crystal Superalloy[J]. 中国腐蚀与防护学报, 2024, 44(5): 1295-1304.
[11] WU Jinyi, CHAI Ke, LI Xiaolin, SHANG Jin, LI Qiang, WU Yaohua. Effects of Surrounding Factors on Settlement of Balanus Reticulatus Cyprids in Artificial Seawaters[J]. 中国腐蚀与防护学报, 2024, 44(5): 1316-1322.
[12] ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[13] LIU Jiuyun, DONG Lijin, ZHANG Yan, WANG Qinying, LIU Li. Research Progress on Sulfide Stress Corrosion Cracking of Dissimilar Weld Joints in Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[14] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[15] JIANG Guangrui, LIU Guanghui, SHANG Ting. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of ZnAlMg Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
No Suggested Reading articles found!