Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (1): 46-60    DOI: 10.11902/1005.4537.2024.259
Current Issue | Archive | Adv Search |
Research Progress in Metallic Interconnectors for Solid Oxide Fuel Cells (SOFCs)
DONG Ziye1, WU Yiheng1, LU Chong2(), SHEN Zhao1(), ZENG Xiaoqin1
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Instrument Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article: 

DONG Ziye, WU Yiheng, LU Chong, SHEN Zhao, ZENG Xiaoqin. Research Progress in Metallic Interconnectors for Solid Oxide Fuel Cells (SOFCs). Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 46-60.

Download:  HTML  PDF(18520KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Solid oxide fuel cell (SOFC) is a type of all-solid-state fuel cell, in which the interconnector, as a key component, significantly affects the performance of the cell. Earlier interconnects were made of ceramic materials, whose high cost and high resistance hindered the development of SOFCs. As the operating temperature of SOFCs has decreased to a range from 550 oC to 800 oC, the possibility of replacing ceramic materials with metallic alternatives has emerged. Ferritic stainless steel (FSS) has been identified as a promising candidate for interconnectors due to its low cost, good machinability and good corrosion resistance at elevated temperatures, etc. But its properties still need to be further optimized. This paper introduces the research status of SOFC interconnectors at 550-800 oC with emphasis on the research status of FSS and surface-modified FSS. The advantages and disadvantages of pre-oxidation and various coating-modified FSS are compared, and the potential research direction of interconnecting materials is prospected.

Key words:  solid oxide fuel cell      metallic interconnector      oxidation resistance      surface coating     
Received:  17 August 2024      32134.14.1005.4537.2024.259
ZTFLH:  TG174  
Fund: Lingchuang Research Project(23GFCJJ12-941; 22GFC-JJ12-477);Scientific Research Program for Young Talents of China National Nuclear Corporation(24GFC-JJ12-131)
Corresponding Authors:  SHEN Zhao, E-mail: shenzhao081@sjtu.edu.cn;
LU Chong, E-mail: luchong@sjtu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.259     OR     https://www.jcscp.org/EN/Y2025/V45/I1/46

Fig.1  Cross-sectional SEM and EDS images of SUS 430[33] (a), AISI 441[36] (b) and Crofer 22 APU[20] (c) after oxidation in air at 800 oC for 1000 h
Fig.2  SEM-EDS images of Crofer 22 APU after oxidation at 800 oC for 300 h in air (a) and the air side of dual atmospheres (b)[41]
Fig.3  SEM top views (a-d) and cross-sectional views (e-h) of AISI 441 bare steel (a, c, e, g) and coated sample (b, d, f, h) after exposure in the air side (a, b, e, f) and fuel side (c, d, g, h)[63]
Fig.4  Cross-sectional SEM/EDS images of the coated alloy (a), SEM images of the coating (b), and high-resolution SEM images of the coating before and after sintering (c)[72]
Fig.5  Cross-sectional SEM image and the corresponding EDS elemental distribution maps of TiC/TNSC coated (a) and TNSC coated samples (b) after oxidation in air at 800 oC for 500 h[94]
ElementMgMnCoNiCuZn
AlMgAl2O4MnAl2O4CoAl2O4NiAl2O4CuAl2O4ZnAl2O4
σ = 10-6σ = 10-3σ = 10-5σ = 10-4σ = 0.05σ = 10-6
α = 9.0α = 7.9α = 8.7α = 8.1α = /α = 8.7
CrMgCr2O4Mn1.2Cr1.8O4CoCr2O4NiCr2O4CuCr2O4ZnCr2O4
σ = 0.02σ = 0.02σ = 7.4σ = 0.73σ = 0.40σ = 0.01
α = 7.2α = 6.8α = 7.5α = 7.3α = /α = 7.1
MnMgMn2O4Mn3O4CoMn2O4NiMn2O4Cu1.3Mn1.7O4ZnMn2O4
σ = 0.97σ = 0.10σ = 6.4σ = 1.4σ = 225(750 oC)σ = /
α = 8.7α = 8.8α = 7.0α = 8.5α = 12.2α = /
FeMgFe2O4MnFe2O4CoFe2O4NiFe2O4CuFe2O4ZnFe2O4
σ = 0.08σ = 8.0σ = 0.93σ = 0.26σ = 9.1σ = 0.07
α = 12.3α = 12.5α = 12.1α = 10.8α = 11.2α = 7.0
CoMgCo2O4MnCo2O4Co3O4NiCo2O4CuCo2O4ZnCo2O4
σ = /σ = 60σ = 6.7σ = /σ = /σ = /
α = /α = 9.7α = 9.3α = /α = /α = /
Table 1  Electrical conductivities and coefficients of thermal expansion of various spinels[76]
1 Sun K N. Solid Oxide Fuel Cell [M]. Beijing: Science Press, 2019
孙克宁. 固体氧化物燃料电池 [M]. 北京: 科学出版社, 2019
2 Li J. Oxidation behavior, Cr evaporation feature and surface modification of metallic interconnect for intermediate temperature solid oxide fuel cells [D]. Wuhan: Huazhong University of Science and Technology, 2018
李 俊. 中温固体氧化物燃料电池金属连接体的氧化行为和Cr挥发特性及其表面改性 [D]. 武汉: 华中科技大学, 2018
3 Liu Y, Ren Y J, Chen J, et al. Preparation and corrosion resistance of ternary layered compound Cr2AlC coating on 304 stainless steel for bipolar plates of PEMFC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 62
刘 云, 任延杰, 陈 荐 等. 质子交换膜燃料电池不锈钢双极板表面Cr2AlC涂层的制备与耐蚀性能 [J]. 中国腐蚀与防护学报, 2023, 43: 62
4 Yamamoto O. Solid oxide fuel cells: fundamental aspects and prospects [J]. Electrochim. Acta, 2000, 45: 2423
5 Podhurska V, Kuprin O, Prikhna T, et al. Development of oxidation-resistant and electrically conductive coating of Ti-Al-C system for the lightweight interconnects of solid oxide fuel cells [J]. Heliyon, 2024, 10: e23275
6 Evans A, Bieberle-Hütter A, Rupp J L M, et al. Review on microfabricated micro-solid oxide fuel cell membranes [J]. J. Power Sources, 2009, 194: 119
7 Laosiripojana N. Reviews on solid oxide fuel cell technology [J]. Eng. J., 2009, 13: 65
8 Wang B H, Xiao B, Pan P Y, et al. Research progress on corrosion of metal interconnector for solid oxide fuel cells [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 6
王碧辉, 肖 博, 潘佩媛 等. 固体氧化物燃料电池金属连接体腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 6
doi: 10.11902/1005.4537.2022.049
9 Cheng Q, Han D, Shi J, et al. Research progress of new interconnect materials used for solid oxide fuel cell [J]. J. Funct. Mater., 2023, 54(2): 18
程 强, 韩 东, 时 婧 等. 固体氧化物燃料电池新型连接体材料的研究进展 [J]. 功能材料, 2023, 54(2): 18
10 Yokokawa H, Sakai N, Horita T, et al. Recent developments in solid oxide fuel cell materials [J]. Fuel Cells, 2001, 1: 117
11 Singhal S C. Solid oxide fuel cells: past, present and future [A]. IrvineJT S, ConnorP. Solid Oxide Fuels Cells: Facts and Figures [M]. London: Springer, 2013: 1
12 Minh N Q, Horne C R, Liu F S, et al. Proceedings of the Twenty Fifth Intersociety Energy Conversion Engineering Conference [C]. New York: American Institute of Chemical Engineers, 1990: 256
13 Zhu W Z, Deevi S C. Development of interconnect materials for solid oxide fuel cells [J]. Mater. Sci. Eng., 2003, 348A: 227
14 Wu J W, Liu X B. Recent development of SOFC metallic interconnect [J]. J. Mater. Sci. Technol., 2010, 26: 293
15 Fontana S, Amendola R, Chevalier S, et al. Metallic interconnects for SOFC: characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys [J]. J. Power Sources, 2007, 171: 652
16 Kendall K. Progress in solid oxide fuel cell materials [J]. Int. Mater. Rev., 2005, 50: 257
17 Mah J C W, Muchtar A, Somalu M R, et al. Metallic interconnects for solid oxide fuel cell: a review on protective coating and deposition techniques [J]. Int. J. Hydrog. Energy, 2017, 42: 9219
18 Singhal S C. Science and technology of solid- oxide fuel cells [J]. MRS Bull., 2000, 25: 16
19 Shaigan N, Qu W, Ivey D G, et al. A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects [J]. J. Power Sources, 2010, 195: 1529
20 Miguel-Pérez V, Martínez-Amesti A, Nó M L, et al. Oxide scale formation on different metallic interconnects for solid oxide fuel cells [J]. Corros. Sci., 2012, 60: 38
21 Hilpert K, Das D, Miller M, et al. Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes [J]. J. Electrochem. Soc., 1996, 143: 3642
22 Konysheva E, Seeling U, Besmehn A, et al. Chromium vaporization of the ferritic steel Crofer22APU and ODS Cr5Fe1Y2O3 alloy [J]. J. Mater. Sci., 2007, 42: 5778
23 Zhang W Y, Yan D, Yang J, et al. A novel low Cr-containing Fe-Cr-Co alloy for metallic interconnects in planar intermediate temperature solid oxide fuel cells [J]. J. Power Sources, 2014, 271: 25
24 Jiang S P, Chen X B. Chromium deposition and poisoning of cathodes of solid oxide fuel cells-a review [J]. Int. J. Hydrog. Energy, 2014, 39: 505
25 Chen X B, Jin C, Zhao L, et al. Study on the Cr deposition and poisoning phenomenon at (La0.6Sr0.4)(Co0.2Fe0.8)O3- δ electrode of solid oxide fuel cells by transmission X-ray microscopy [J]. Int. J. Hydrog. Energy, 2014, 39: 15728
26 Martinz H P, Köck W, Sakaki T. Ducropur Ducrolloy-New chromium materials [J]. J. Phys. IV, 1993, 3: 205
27 Shaigan N. Protective/conductive coatings for ferritic stainless steel interconnects used in solid oxide fuel cells [D]. Alberta: University of Alberta, 2009
28 Fergus J W. Metallic interconnects for solid oxide fuel cells [J]. Mater. Sci. Eng., 2005, 397A: 271
29 Li J, Pu J, Xiao J Z, et al. Oxidation of Haynes 230 alloy in reduced temperature solid oxide fuel cell environments [J]. J. Power Sources, 2005, 139: 182
30 Zhu W Z, Deevi S C. Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance [J]. Mater. Res. Bull., 2003, 38: 957
31 Yang Z G. Recent advances in metallic interconnects for solid oxide fuel cells [J]. Int. Mater. Rev., 2008, 53: 39
32 Sun Q Q, Jia X Q, Xu Z L, et al. Study on structure and adhesion of oxide scales of 304 and 430 stainless steel billets [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1649
孙琼琼, 贾玺泉, 徐震霖 等. 304和430不锈钢铸坯氧化皮结构及结合力研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1649
doi: 10.11902/1005.4537.2023.397
33 Jia C, Wang Y H, Molin S, et al. High temperature oxidation behavior of SUS430 SOFC interconnects with Mn-Co spinel coating in air [J]. J. Alloy. Compd., 2019, 787: 1327
34 Mehran M T, Kim T H, Khan M Z, et al. Highly durable nano-oxide dispersed ferritic stainless steel interconnects for intermediate temperature solid oxide fuel cells [J]. J. Power Sources, 2019, 439: 227109
35 Mehran M T, Song R H, Lee J W, et al. Nano-oxide dispersed ferritic stainless steel for metallic interconnects of solid oxide fuel cells [J]. ECS Trans., 2017, 78: 1575
36 Wang Z Q, Li C, Si X Q, et al. Oxidation behavior of ferritic stainless steel interconnect coated by a simple diffusion bonded cobalt protective layer for solid oxide fuel cells [J]. Corros. Sci., 2020, 172: 108739
37 Reddy M J, Svensson J E, Froitzheim J. Evaluating candidate materials for balance of plant components in SOFC: oxidation and Cr evaporation properties [J]. Corros. Sci., 2021, 190: 109671
38 Yang Z, Xia G, Wang C, et al. Investigation of AISI 441 ferritic stainless steel and development of spinel coatings for SOFC interconnect applications [R]. Richland: Pacific Northwest National Laboratory, 2008
39 Goebel C, Berger R, Bernuy-Lopez C, et al. Long-term (4 year) degradation behavior of coated stainless steel 441 used for solid oxide fuel cell interconnect applications [J]. J. Power Sources, 2020, 449: 227480
40 Yang Z G, Xia G G, Wang C M, et al. Investigation of iron-chromium-niobium-titanium ferritic stainless steel for solid oxide fuel cell interconnect applications [J]. J. Power Sources, 2008, 183: 660
41 Yang Z G, Xia G G, Walker M S, et al. High temperature oxidation/corrosion behavior of metals and alloys under a hydrogen gradient [J]. Int. J. Hydrog. Energy, 2007, 32: 3770
42 Park B K, Lee J W, Lee S B, et al. Cu- and Ni-doped Mn1.5Co1.5O4 spinel coatings on metallic interconnects for solid oxide fuel cells [J]. Int. J. Hydrog. Energy, 2013, 38: 12043
43 Hosseini S N, Karimzadeh F, Enayati M H, et al. Oxidation and electrical behavior of CuFe2O4 spinel coated Crofer 22 APU stainless steel for SOFC interconnect application [J]. Solid State Ionics, 2016, 289: 95
44 Sabato A G, Molin S, Javed H, et al. In-situ Cu-doped MnCo-spinel coatings for solid oxide cell interconnects processed by electrophoretic deposition [J]. Ceram. Int., 2019, 45: 19148
doi: 10.1016/j.ceramint.2019.06.161
45 Lee S I, Hong J, Kim H, et al. Highly dense Mn-Co spinel coating for protection of metallic interconnect of solid oxide fuel cells [J]. J. Electrochem. Soc., 2014, 161: F1389
46 Yang Z G, Walker M S, Singh P, et al. Anomalous corrosion behavior of stainless steels under SOFC interconnect exposure conditions [J]. Electrochem. Solid-State Lett., 2003, 6: B35
47 Alnegren P, Sattari M, Svensson J E, et al. Severe dual atmosphere effect at 600 oC for stainless steel 441 [J]. J. Power Sources, 2016, 301: 170
48 Gunduz K O, Chyrkin A, Goebel C, et al. The effect of hydrogen on the breakdown of the protective oxide scale in solid oxide fuel cell interconnects [J]. Corros. Sci., 2021, 179: 109112
49 Amendola R, Gannon P, Ellingwood B, et al. Oxidation behavior of coated and preoxidized ferritic steel in single and dual atmosph-ere exposures at 800 oC [J]. Surf. Coat. Technol., 2012, 206: 2173
50 Stygar M, Matsuda K, Lee S, et al. Corrosion behavior of crofer 22APU for metallic interconnects in single and dual atmosphere exposures at 1073 K [J]. Acta Phys. Pol., 2017, 131A: 1394
51 Li J, Yan D, Gong Y P, et al. Investigation of anomalous oxidation behavior of SUS430 alloy in solid oxide fuel cell dual atmosphere [J]. J. Electrochem. Soc., 2017, 164: C945
52 Alnegren P, Sattari M, Svensson J E, et al. Temperature dependence of corrosion of ferritic stainless steel in dual atmosphere at 600-800 oC [J]. J. Power Sources, 2018, 392: 129
53 Skilbred A W B, Haugsrud R. The effect of dual atmosphere conditions on the corrosion of Sandvik Sanergy HT [J]. Int. J. Hydrog. Energy, 2012, 37: 8095
54 Rufner J, Gannon P, White P, et al. Oxidation behavior of stainless steel 430 and 441 at 800 oC in single (air/air) and dual atmosphere (air/hydrogen) exposures [J]. Int. J. Hydrog. Energy, 2008, 33: 1392
55 Goebel C, Alnegren P, Faust R, et al. The effect of pre-oxidation parameters on the corrosion behavior of AISI 441 in dual atmosphere [J]. Int. J. Hydrog. Energy, 2018, 43: 14665
56 Essuman E, Meier G H, Żurek J, et al. The effect of water vapor on selective oxidation of Fe-Cr alloys [J]. Oxid. Met., 2008, 69: 143
57 Chyrkin A, Gunduz K O, Asokan V, et al. High temperature oxidation of AISI 441 in simulated solid oxide fuel cell anode side conditions [J]. Corros. Sci., 2022, 203: 110338
58 Yang Z G, Walker M S, Singh P, et al. Oxidation behavior of ferritic stainless steels under SOFC interconnect exposure conditions [J]. J. Electrochem. Soc., 2004, 151: B669
59 Talic B, Molin S, Hendriksen P V, et al. Effect of pre-oxidation on the oxidation resistance of Crofer 22 APU [J]. Corros. Sci., 2018, 138: 189
60 Sachitanand R, Sattari M, Svensson J E, et al. The oxidation of coated SOFC interconnects in fuel side environments [J]. Fuel Cells, 2016, 16: 32
61 Sattari M, Sachitanand R, Froitzheim J, et al. The effect of Ce on the high temperature oxidation properties of a Fe-22%Cr steel: microstructural investigation and EELS analysis [J]. Mater. High Temp., 2015, 32: 118
62 Fontana S, Chevalier S, Caboche G. Metallic interconnects for solid oxide fuel cell: performance of reactive element oxide coating during long time exposure [J]. Mater. Corros., 2011, 62: 650
63 Tomas M, Svensson J E, Froitzheim J. Hydrogen-barrier coatings against dual-atmosphere corrosion for IT-SOFC interconnect applications [J]. Int. J. Hydrog. Energy, 2024, 58: 852
64 Ko Y S, Kim S, Park S, et al. Effect of the simultaneous addition of lanthanum and nickel on the oxidation behavior and related area-specific resistance of ferritic stainless steels for solid oxide fuel cell interconnects [J]. Corros. Sci., 2024, 233: 112098
65 Qu W, Jian L, Ivey D G, et al. Yttrium, cobalt and yttrium/cobalt oxide coatings on ferritic stainless steels for SOFC interconnects [J]. J. Power Sources, 2006, 157: 335
66 Falk-Windisch H, Claquesin J, Sattari M, et al. Co-and Ce/Co-coated ferritic stainless steel as interconnect material for intermediate temperature solid oxide fuel cells [J]. J. Power Sources, 2017, 343: 1
67 Jiang S P, Liu L, Ong K P, et al. Electrical conductivity and performance of doped LaCrO3 perovskite oxides for solid oxide fuel cells [J]. J. Power Sources, 2008, 176: 82
68 Fergus J W. Lanthanum chromite-based materials for solid oxide fuel cell interconnects [J]. Solid State Ionics, 2004, 171: 1
69 Brylewski T, Dabek J, Przybylski K, et al. Screen-printed (La, Sr)CrO3 coatings on ferritic stainless steel interconnects for solid oxide fuel cells using nanopowders prepared by means of ultrasonic spray pyrolysis [J]. J. Power Sources, 2012, 208: 86
70 Kim J H, Peck D H, Song R H, et al. Synthesis and sintering properties of (La0.8Ca0.2- x Sr x ) CrO3 perovskite materials for SOFC interconnect [J]. J. Electroceram., 2006, 17: 729
71 Yang Z G, Xia G G, Maupin G D, et al. Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications [J]. Surf. Coat. Technol., 2006, 201: 4476
72 Waluyo N S, Song R H, Lee S B, et al. Electrophoretically deposited LaNi0.6Fe0.4O3 perovskite coatings on metallic interconnects for solid oxide fuel cells [J]. J. Electrochem. Soc., 2016, 163: F1245
73 Waluyo N S, Park B K, Song R H, et al. Lanthanum nickelates with a perovskite structure as protective coatings on metallic interconnects for solid oxide fuel cells [J]. J. Korean Ceram. Soc., 2015, 52: 344
74 Chu C L, Wang J Y, Lee S. Effects of La0.67Sr0.33MnO3 protective coating on SOFC interconnect by plasma-sputtering [J]. Int. J. Hydrog. Energy, 2008, 33: 2536
75 Shaigan N, Ivey D G, Chen W X. Co/LaCrO3 composite coatings for AISI 430 stainless steel solid oxide fuel cell interconnects [J]. J. Power Sources, 2008, 185: 331
76 Petric A, Ling H. Electrical conductivity and thermal expansion of spinels at elevated temperatures [J]. J. Am. Ceram. Soc., 2007, 90: 1515
77 Zhao Q Q, Geng S J, Chen G, et al. Comparison of electroplating and sputtering Ni for Ni/NiFe2 dual layer coating on ferritic stainless steel interconnect [J]. Corros. Sci., 2021, 192: 109837
78 Acharya N, Chaitra U, Vijeth H, et al. Highly dense Mn3O4 and CuMn2O4 spinels as efficient protective coatings on solid oxide fuel cell interconnect and their chromium diffusion studies [J]. J. Alloy. Compd., 2022, 918: 165377
79 Shen Z J, Rong J, Yu X H. Mn x Co3- x O4 spinel coatings: controlled synthesis and high temperature oxidation resistance behavior [J]. Ceram. Int., 2020, 46: 5821
80 Wang B H, Liu J, Cui Z X, et al. Long-term stability of MnCo spinel coatings prepared by electrophoretic deposition at high temperatures [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 972
王碧辉, 刘 聚, 崔志翔 等. 电泳沉积制备MnCo尖晶石涂层的高温长期稳定性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 972
doi: 10.11902/1005.4537.2023.310
81 Hosseini N, Abbasi M H, Karimzadeh F, et al. Development of Cu1.3Mn1.7O4 spinel coating on ferritic stainless steel for solid oxide fuel cell interconnects [J]. J. Power Sources, 2015, 273: 1073
82 Pan Y, Liu Y T, Shi D Y, et al. Fabrication and oxidation behavior of the Cu-Fe spinel coating for SOFC steel interconnect applications [J]. ACS Appl. Energy Mater., 2024, 7: 4950
83 Zhao M S, Geng S J, Chen G, et al. Thermal conversion and evolution behavior of surface scale on SOFC interconnect steel with sputtered FeCoNi coating [J]. Corros. Sci., 2020, 168: 108561
84 Zhou J T, Hu X W, Li J L, et al. Cu doped Ni-Co spinel protective coatings for solid oxide fuel cell interconnects application [J]. Int. J. Hydrog. Energy, 2021, 46: 33580
85 Xiao J H, Zhang W Y, Xiong C Y, et al. Oxidation behavior of Cu-doped MnCo2O4 spinel coating on ferritic stainless steels for solid oxide fuel cell interconnects [J]. Int. J. Hydrog. Energy, 2016, 41: 9611
86 Zhou J T, Hu X W, Li J L. Effect of Cu on the diffusion behavior and electrical properties of Ni-Co conversion coating for metallic interconnects in solid oxide fuel cells [J]. J. Alloy. Compd., 2021, 887: 161358
87 Jiang Z, Wen K, Song C, et al. Highly conductive Mn-Co spinel powder prepared by Cu-doping used for interconnect protection of SOFC [J]. Coatings, 2021, 11: 1298
88 Saeidpour F, Ebrahimifar H. Effect of nanostructure Fe-Ni-Co spinel oxides/Y2O3 coatings on the high-temperature oxidation behavior of Crofer 22 APU stainless steel interconnect [J]. Corros. Sci., 2021, 182: 109280
89 Tseng H P, Yung T Y, Liu C K, et al. Oxidation characteristics and electrical properties of La-or Ce-doped MnCo2O4 as protective layer on SUS441 for metallic interconnects in solid oxide fuel cells [J]. Int. J. Hydrog. Energy, 2020, 45: 12555
90 Shahbaznejad H, Ebrahimifar H. A study on the oxidation and electrical behavior of crofer 22 APU solid oxide fuel cell interconnects with Ni-Co-CeO2 composite coating [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 7550
91 Wang B H, Li K Y, Liu J, et al. Promoting electric conductivity of MnCo spinel coating by doping transition metals (Cu, Fe) or rare-earth elements (La, Y) for solid oxide fuel cell interconnect [J]. Int. J. Hydrog. Energy, 2024, 61: 216
92 Jin Y Q, Hao G Z, Guo M Y, et al. Ce-doped (Mn, Co)3O4 coatings for solid oxide fuel cell interconnect applications [J]. Ceram. Int., 2022, 48: 34931
93 Li X C, Chi Y C, Wei S L, et al. The preparation and properties of Ti(Nb)-Si-C coating on the pre-oxidized ferritic stainless steel for solid oxide fuel cell interconnect [J]. Materials, 2024, 17: 632
94 Li X C, Wang Z K, Wei S L, et al. TiC and (Ti, Nb)3SiC2 based dual-layer coating on SUS430 for solid oxide fuel cell interconnects [J]. Int. J. Hydrog. Energy, 2024, 63: 19
95 Gan L, Yamamoto T, Murakami H. Microstructure and diffusion behavior in the multilayered oxides formed on a Co-W electroplated ferritic stainless steel followed by oxidation treatment [J]. Acta Mater., 2020, 194: 295
doi: 10.1016/j.actamat.2020.04.048
96 Gan L, Murakami H, Saeki I. High temperature oxidation of Co-W electroplated type 430 stainless steel for the interconnect of solid oxide fuel cells [J]. Corros. Sci., 2018, 134: 162
97 Safikhani A, Aminfard M. Effect of W and Ti addition on oxidation behavior and area-specific resistance of Fe-22Cr-0.5Mn ferritic stainless steel for SOFCs interconnect [J]. Int. J. Hydrog. Energy, 2014, 39: 2286
[1] WU Liangliang, YIN Ruozhan, CHEN Zhaoxu, LIANG Junyue, SUN Qingqing, WU Liankui, CAO Fahe. Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[2] WANG Bihui, LIU Ju, CUI Zhixiang, XIAO Bo, YANG Tianrang, ZHANG Naiqiang. Long-term Stability of MnCo Spinel Coatings Prepared by Electrophoretic Deposition at High Temperatures[J]. 中国腐蚀与防护学报, 2024, 44(4): 972-978.
[3] YU Bo, LI Zhang, ZHOU Kaixuan, TIAN Haoliang, FANG Yongchao, ZHANG Xiaomin, JIN Guo. High-temperature Performance of MoSi2 Modified YGYZ Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 812-820.
[4] WANG Bihui, XIAO Bo, PAN Peiyuan, LIU Ju, ZHANG Naiqiang. Research Progress on Corrosion of Metal Interconnector for Solid Oxide Fuel Cells[J]. 中国腐蚀与防护学报, 2023, 43(1): 6-12.
[5] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[6] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[7] Ling WANG,Junhuai XIANG,Honghua ZHANG,Songlin QIN. High Temperature Oxidation Behavior of Three Co-20Re-xCr Alloys in 3.04×10-5 Pa Oxygen at 1000 and 1100 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[8] Chao SUN, Xiao YANG, Yuhua WEN. Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[9] ZHANG Hui, WANG Anqi, WU Junwei. ADVANCES IN PROTECTIVE COATING FOR SOFC METALLIC INTERCONNECT[J]. 中国腐蚀与防护学报, 2012, 32(5): 357-363.
[10] JIN Guangxi, PAN Fenghong, LANG Cheng,QIAO Lijie. ELEVATED TEMPERATURE ELECTRICAL CONDUCTIVITY OF STS444/Y ALLOY USED FOR SOFC INTERCONNECTS[J]. 中国腐蚀与防护学报, 2011, 31(5): 367-370.
[11] ZHAO Shilu ZHANG Jun LIU Changsheng. HIGH TEMPERATURE OXIDATION BEHAVIOR OF MULTI-COMPONENT (Ti, Al, Zr,Cr) N FILMS\par DEPOSITED BY MULTI-ARC ION PLATING[J]. 中国腐蚀与防护学报, 2009, 29(4): 296-300.
[12] ANG Dongsheng TIAN Zongjun CHEN Zhiyong SHEN Lida WU Hongyan ZHANG Pingze LIU . HIGH-TEMPERATURE OXIDATION RESISTANCE COATINGS ON TiAl ALLOY SURFACE[J]. 中国腐蚀与防护学报, 2009, 29(1): 1-8.
[13] ;. RECENT DEVELOPMENT OF PERFORMANCE VALUATION ON THERMAL BARRIER COATINGS[J]. 中国腐蚀与防护学报, 2007, 27(5): 309-314 .
[14] Yuefei Zhang. High Temperature Oxidation Resistance of the Plasma Titanizing on Copper Surface by Double Glow Discharge[J]. 中国腐蚀与防护学报, 2004, 24(3): 139-142 .
[15] Yujuan Zhang; Xiaofeng Sun; Tao Jin. 1050℃ ISOTHERMAL OXIDATION RESISTANCE OF TWO NiCrAlY COATINGS[J]. 中国腐蚀与防护学报, 2002, 22(6): 339-342 .
No Suggested Reading articles found!