|
|
Research Progress in Metallic Interconnectors for Solid Oxide Fuel Cells (SOFCs) |
DONG Ziye1, WU Yiheng1, LU Chong2( ), SHEN Zhao1( ), ZENG Xiaoqin1 |
1 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2 Instrument Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China |
|
Cite this article:
DONG Ziye, WU Yiheng, LU Chong, SHEN Zhao, ZENG Xiaoqin. Research Progress in Metallic Interconnectors for Solid Oxide Fuel Cells (SOFCs). Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 46-60.
|
Abstract Solid oxide fuel cell (SOFC) is a type of all-solid-state fuel cell, in which the interconnector, as a key component, significantly affects the performance of the cell. Earlier interconnects were made of ceramic materials, whose high cost and high resistance hindered the development of SOFCs. As the operating temperature of SOFCs has decreased to a range from 550 oC to 800 oC, the possibility of replacing ceramic materials with metallic alternatives has emerged. Ferritic stainless steel (FSS) has been identified as a promising candidate for interconnectors due to its low cost, good machinability and good corrosion resistance at elevated temperatures, etc. But its properties still need to be further optimized. This paper introduces the research status of SOFC interconnectors at 550-800 oC with emphasis on the research status of FSS and surface-modified FSS. The advantages and disadvantages of pre-oxidation and various coating-modified FSS are compared, and the potential research direction of interconnecting materials is prospected.
|
Received: 17 August 2024
32134.14.1005.4537.2024.259
|
|
Fund: Lingchuang Research Project(23GFCJJ12-941; 22GFC-JJ12-477);Scientific Research Program for Young Talents of China National Nuclear Corporation(24GFC-JJ12-131) |
Corresponding Authors:
SHEN Zhao, E-mail: shenzhao081@sjtu.edu.cn; LU Chong, E-mail: luchong@sjtu.edu.cn
|
1 |
Sun K N. Solid Oxide Fuel Cell [M]. Beijing: Science Press, 2019
|
|
孙克宁. 固体氧化物燃料电池 [M]. 北京: 科学出版社, 2019
|
2 |
Li J. Oxidation behavior, Cr evaporation feature and surface modification of metallic interconnect for intermediate temperature solid oxide fuel cells [D]. Wuhan: Huazhong University of Science and Technology, 2018
|
|
李 俊. 中温固体氧化物燃料电池金属连接体的氧化行为和Cr挥发特性及其表面改性 [D]. 武汉: 华中科技大学, 2018
|
3 |
Liu Y, Ren Y J, Chen J, et al. Preparation and corrosion resistance of ternary layered compound Cr2AlC coating on 304 stainless steel for bipolar plates of PEMFC [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 62
|
|
刘 云, 任延杰, 陈 荐 等. 质子交换膜燃料电池不锈钢双极板表面Cr2AlC涂层的制备与耐蚀性能 [J]. 中国腐蚀与防护学报, 2023, 43: 62
|
4 |
Yamamoto O. Solid oxide fuel cells: fundamental aspects and prospects [J]. Electrochim. Acta, 2000, 45: 2423
|
5 |
Podhurska V, Kuprin O, Prikhna T, et al. Development of oxidation-resistant and electrically conductive coating of Ti-Al-C system for the lightweight interconnects of solid oxide fuel cells [J]. Heliyon, 2024, 10: e23275
|
6 |
Evans A, Bieberle-Hütter A, Rupp J L M, et al. Review on microfabricated micro-solid oxide fuel cell membranes [J]. J. Power Sources, 2009, 194: 119
|
7 |
Laosiripojana N. Reviews on solid oxide fuel cell technology [J]. Eng. J., 2009, 13: 65
|
8 |
Wang B H, Xiao B, Pan P Y, et al. Research progress on corrosion of metal interconnector for solid oxide fuel cells [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 6
|
|
王碧辉, 肖 博, 潘佩媛 等. 固体氧化物燃料电池金属连接体腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 6
doi: 10.11902/1005.4537.2022.049
|
9 |
Cheng Q, Han D, Shi J, et al. Research progress of new interconnect materials used for solid oxide fuel cell [J]. J. Funct. Mater., 2023, 54(2): 18
|
|
程 强, 韩 东, 时 婧 等. 固体氧化物燃料电池新型连接体材料的研究进展 [J]. 功能材料, 2023, 54(2): 18
|
10 |
Yokokawa H, Sakai N, Horita T, et al. Recent developments in solid oxide fuel cell materials [J]. Fuel Cells, 2001, 1: 117
|
11 |
Singhal S C. Solid oxide fuel cells: past, present and future [A]. IrvineJT S, ConnorP. Solid Oxide Fuels Cells: Facts and Figures [M]. London: Springer, 2013: 1
|
12 |
Minh N Q, Horne C R, Liu F S, et al. Proceedings of the Twenty Fifth Intersociety Energy Conversion Engineering Conference [C]. New York: American Institute of Chemical Engineers, 1990: 256
|
13 |
Zhu W Z, Deevi S C. Development of interconnect materials for solid oxide fuel cells [J]. Mater. Sci. Eng., 2003, 348A: 227
|
14 |
Wu J W, Liu X B. Recent development of SOFC metallic interconnect [J]. J. Mater. Sci. Technol., 2010, 26: 293
|
15 |
Fontana S, Amendola R, Chevalier S, et al. Metallic interconnects for SOFC: characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys [J]. J. Power Sources, 2007, 171: 652
|
16 |
Kendall K. Progress in solid oxide fuel cell materials [J]. Int. Mater. Rev., 2005, 50: 257
|
17 |
Mah J C W, Muchtar A, Somalu M R, et al. Metallic interconnects for solid oxide fuel cell: a review on protective coating and deposition techniques [J]. Int. J. Hydrog. Energy, 2017, 42: 9219
|
18 |
Singhal S C. Science and technology of solid- oxide fuel cells [J]. MRS Bull., 2000, 25: 16
|
19 |
Shaigan N, Qu W, Ivey D G, et al. A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects [J]. J. Power Sources, 2010, 195: 1529
|
20 |
Miguel-Pérez V, Martínez-Amesti A, Nó M L, et al. Oxide scale formation on different metallic interconnects for solid oxide fuel cells [J]. Corros. Sci., 2012, 60: 38
|
21 |
Hilpert K, Das D, Miller M, et al. Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes [J]. J. Electrochem. Soc., 1996, 143: 3642
|
22 |
Konysheva E, Seeling U, Besmehn A, et al. Chromium vaporization of the ferritic steel Crofer22APU and ODS Cr5Fe1Y2O3 alloy [J]. J. Mater. Sci., 2007, 42: 5778
|
23 |
Zhang W Y, Yan D, Yang J, et al. A novel low Cr-containing Fe-Cr-Co alloy for metallic interconnects in planar intermediate temperature solid oxide fuel cells [J]. J. Power Sources, 2014, 271: 25
|
24 |
Jiang S P, Chen X B. Chromium deposition and poisoning of cathodes of solid oxide fuel cells-a review [J]. Int. J. Hydrog. Energy, 2014, 39: 505
|
25 |
Chen X B, Jin C, Zhao L, et al. Study on the Cr deposition and poisoning phenomenon at (La0.6Sr0.4)(Co0.2Fe0.8)O3- δ electrode of solid oxide fuel cells by transmission X-ray microscopy [J]. Int. J. Hydrog. Energy, 2014, 39: 15728
|
26 |
Martinz H P, Köck W, Sakaki T. Ducropur Ducrolloy-New chromium materials [J]. J. Phys. IV, 1993, 3: 205
|
27 |
Shaigan N. Protective/conductive coatings for ferritic stainless steel interconnects used in solid oxide fuel cells [D]. Alberta: University of Alberta, 2009
|
28 |
Fergus J W. Metallic interconnects for solid oxide fuel cells [J]. Mater. Sci. Eng., 2005, 397A: 271
|
29 |
Li J, Pu J, Xiao J Z, et al. Oxidation of Haynes 230 alloy in reduced temperature solid oxide fuel cell environments [J]. J. Power Sources, 2005, 139: 182
|
30 |
Zhu W Z, Deevi S C. Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance [J]. Mater. Res. Bull., 2003, 38: 957
|
31 |
Yang Z G. Recent advances in metallic interconnects for solid oxide fuel cells [J]. Int. Mater. Rev., 2008, 53: 39
|
32 |
Sun Q Q, Jia X Q, Xu Z L, et al. Study on structure and adhesion of oxide scales of 304 and 430 stainless steel billets [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1649
|
|
孙琼琼, 贾玺泉, 徐震霖 等. 304和430不锈钢铸坯氧化皮结构及结合力研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1649
doi: 10.11902/1005.4537.2023.397
|
33 |
Jia C, Wang Y H, Molin S, et al. High temperature oxidation behavior of SUS430 SOFC interconnects with Mn-Co spinel coating in air [J]. J. Alloy. Compd., 2019, 787: 1327
|
34 |
Mehran M T, Kim T H, Khan M Z, et al. Highly durable nano-oxide dispersed ferritic stainless steel interconnects for intermediate temperature solid oxide fuel cells [J]. J. Power Sources, 2019, 439: 227109
|
35 |
Mehran M T, Song R H, Lee J W, et al. Nano-oxide dispersed ferritic stainless steel for metallic interconnects of solid oxide fuel cells [J]. ECS Trans., 2017, 78: 1575
|
36 |
Wang Z Q, Li C, Si X Q, et al. Oxidation behavior of ferritic stainless steel interconnect coated by a simple diffusion bonded cobalt protective layer for solid oxide fuel cells [J]. Corros. Sci., 2020, 172: 108739
|
37 |
Reddy M J, Svensson J E, Froitzheim J. Evaluating candidate materials for balance of plant components in SOFC: oxidation and Cr evaporation properties [J]. Corros. Sci., 2021, 190: 109671
|
38 |
Yang Z, Xia G, Wang C, et al. Investigation of AISI 441 ferritic stainless steel and development of spinel coatings for SOFC interconnect applications [R]. Richland: Pacific Northwest National Laboratory, 2008
|
39 |
Goebel C, Berger R, Bernuy-Lopez C, et al. Long-term (4 year) degradation behavior of coated stainless steel 441 used for solid oxide fuel cell interconnect applications [J]. J. Power Sources, 2020, 449: 227480
|
40 |
Yang Z G, Xia G G, Wang C M, et al. Investigation of iron-chromium-niobium-titanium ferritic stainless steel for solid oxide fuel cell interconnect applications [J]. J. Power Sources, 2008, 183: 660
|
41 |
Yang Z G, Xia G G, Walker M S, et al. High temperature oxidation/corrosion behavior of metals and alloys under a hydrogen gradient [J]. Int. J. Hydrog. Energy, 2007, 32: 3770
|
42 |
Park B K, Lee J W, Lee S B, et al. Cu- and Ni-doped Mn1.5Co1.5O4 spinel coatings on metallic interconnects for solid oxide fuel cells [J]. Int. J. Hydrog. Energy, 2013, 38: 12043
|
43 |
Hosseini S N, Karimzadeh F, Enayati M H, et al. Oxidation and electrical behavior of CuFe2O4 spinel coated Crofer 22 APU stainless steel for SOFC interconnect application [J]. Solid State Ionics, 2016, 289: 95
|
44 |
Sabato A G, Molin S, Javed H, et al. In-situ Cu-doped MnCo-spinel coatings for solid oxide cell interconnects processed by electrophoretic deposition [J]. Ceram. Int., 2019, 45: 19148
doi: 10.1016/j.ceramint.2019.06.161
|
45 |
Lee S I, Hong J, Kim H, et al. Highly dense Mn-Co spinel coating for protection of metallic interconnect of solid oxide fuel cells [J]. J. Electrochem. Soc., 2014, 161: F1389
|
46 |
Yang Z G, Walker M S, Singh P, et al. Anomalous corrosion behavior of stainless steels under SOFC interconnect exposure conditions [J]. Electrochem. Solid-State Lett., 2003, 6: B35
|
47 |
Alnegren P, Sattari M, Svensson J E, et al. Severe dual atmosphere effect at 600 oC for stainless steel 441 [J]. J. Power Sources, 2016, 301: 170
|
48 |
Gunduz K O, Chyrkin A, Goebel C, et al. The effect of hydrogen on the breakdown of the protective oxide scale in solid oxide fuel cell interconnects [J]. Corros. Sci., 2021, 179: 109112
|
49 |
Amendola R, Gannon P, Ellingwood B, et al. Oxidation behavior of coated and preoxidized ferritic steel in single and dual atmosph-ere exposures at 800 oC [J]. Surf. Coat. Technol., 2012, 206: 2173
|
50 |
Stygar M, Matsuda K, Lee S, et al. Corrosion behavior of crofer 22APU for metallic interconnects in single and dual atmosphere exposures at 1073 K [J]. Acta Phys. Pol., 2017, 131A: 1394
|
51 |
Li J, Yan D, Gong Y P, et al. Investigation of anomalous oxidation behavior of SUS430 alloy in solid oxide fuel cell dual atmosphere [J]. J. Electrochem. Soc., 2017, 164: C945
|
52 |
Alnegren P, Sattari M, Svensson J E, et al. Temperature dependence of corrosion of ferritic stainless steel in dual atmosphere at 600-800 oC [J]. J. Power Sources, 2018, 392: 129
|
53 |
Skilbred A W B, Haugsrud R. The effect of dual atmosphere conditions on the corrosion of Sandvik Sanergy HT [J]. Int. J. Hydrog. Energy, 2012, 37: 8095
|
54 |
Rufner J, Gannon P, White P, et al. Oxidation behavior of stainless steel 430 and 441 at 800 oC in single (air/air) and dual atmosphere (air/hydrogen) exposures [J]. Int. J. Hydrog. Energy, 2008, 33: 1392
|
55 |
Goebel C, Alnegren P, Faust R, et al. The effect of pre-oxidation parameters on the corrosion behavior of AISI 441 in dual atmosphere [J]. Int. J. Hydrog. Energy, 2018, 43: 14665
|
56 |
Essuman E, Meier G H, Żurek J, et al. The effect of water vapor on selective oxidation of Fe-Cr alloys [J]. Oxid. Met., 2008, 69: 143
|
57 |
Chyrkin A, Gunduz K O, Asokan V, et al. High temperature oxidation of AISI 441 in simulated solid oxide fuel cell anode side conditions [J]. Corros. Sci., 2022, 203: 110338
|
58 |
Yang Z G, Walker M S, Singh P, et al. Oxidation behavior of ferritic stainless steels under SOFC interconnect exposure conditions [J]. J. Electrochem. Soc., 2004, 151: B669
|
59 |
Talic B, Molin S, Hendriksen P V, et al. Effect of pre-oxidation on the oxidation resistance of Crofer 22 APU [J]. Corros. Sci., 2018, 138: 189
|
60 |
Sachitanand R, Sattari M, Svensson J E, et al. The oxidation of coated SOFC interconnects in fuel side environments [J]. Fuel Cells, 2016, 16: 32
|
61 |
Sattari M, Sachitanand R, Froitzheim J, et al. The effect of Ce on the high temperature oxidation properties of a Fe-22%Cr steel: microstructural investigation and EELS analysis [J]. Mater. High Temp., 2015, 32: 118
|
62 |
Fontana S, Chevalier S, Caboche G. Metallic interconnects for solid oxide fuel cell: performance of reactive element oxide coating during long time exposure [J]. Mater. Corros., 2011, 62: 650
|
63 |
Tomas M, Svensson J E, Froitzheim J. Hydrogen-barrier coatings against dual-atmosphere corrosion for IT-SOFC interconnect applications [J]. Int. J. Hydrog. Energy, 2024, 58: 852
|
64 |
Ko Y S, Kim S, Park S, et al. Effect of the simultaneous addition of lanthanum and nickel on the oxidation behavior and related area-specific resistance of ferritic stainless steels for solid oxide fuel cell interconnects [J]. Corros. Sci., 2024, 233: 112098
|
65 |
Qu W, Jian L, Ivey D G, et al. Yttrium, cobalt and yttrium/cobalt oxide coatings on ferritic stainless steels for SOFC interconnects [J]. J. Power Sources, 2006, 157: 335
|
66 |
Falk-Windisch H, Claquesin J, Sattari M, et al. Co-and Ce/Co-coated ferritic stainless steel as interconnect material for intermediate temperature solid oxide fuel cells [J]. J. Power Sources, 2017, 343: 1
|
67 |
Jiang S P, Liu L, Ong K P, et al. Electrical conductivity and performance of doped LaCrO3 perovskite oxides for solid oxide fuel cells [J]. J. Power Sources, 2008, 176: 82
|
68 |
Fergus J W. Lanthanum chromite-based materials for solid oxide fuel cell interconnects [J]. Solid State Ionics, 2004, 171: 1
|
69 |
Brylewski T, Dabek J, Przybylski K, et al. Screen-printed (La, Sr)CrO3 coatings on ferritic stainless steel interconnects for solid oxide fuel cells using nanopowders prepared by means of ultrasonic spray pyrolysis [J]. J. Power Sources, 2012, 208: 86
|
70 |
Kim J H, Peck D H, Song R H, et al. Synthesis and sintering properties of (La0.8Ca0.2- x Sr x ) CrO3 perovskite materials for SOFC interconnect [J]. J. Electroceram., 2006, 17: 729
|
71 |
Yang Z G, Xia G G, Maupin G D, et al. Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications [J]. Surf. Coat. Technol., 2006, 201: 4476
|
72 |
Waluyo N S, Song R H, Lee S B, et al. Electrophoretically deposited LaNi0.6Fe0.4O3 perovskite coatings on metallic interconnects for solid oxide fuel cells [J]. J. Electrochem. Soc., 2016, 163: F1245
|
73 |
Waluyo N S, Park B K, Song R H, et al. Lanthanum nickelates with a perovskite structure as protective coatings on metallic interconnects for solid oxide fuel cells [J]. J. Korean Ceram. Soc., 2015, 52: 344
|
74 |
Chu C L, Wang J Y, Lee S. Effects of La0.67Sr0.33MnO3 protective coating on SOFC interconnect by plasma-sputtering [J]. Int. J. Hydrog. Energy, 2008, 33: 2536
|
75 |
Shaigan N, Ivey D G, Chen W X. Co/LaCrO3 composite coatings for AISI 430 stainless steel solid oxide fuel cell interconnects [J]. J. Power Sources, 2008, 185: 331
|
76 |
Petric A, Ling H. Electrical conductivity and thermal expansion of spinels at elevated temperatures [J]. J. Am. Ceram. Soc., 2007, 90: 1515
|
77 |
Zhao Q Q, Geng S J, Chen G, et al. Comparison of electroplating and sputtering Ni for Ni/NiFe2 dual layer coating on ferritic stainless steel interconnect [J]. Corros. Sci., 2021, 192: 109837
|
78 |
Acharya N, Chaitra U, Vijeth H, et al. Highly dense Mn3O4 and CuMn2O4 spinels as efficient protective coatings on solid oxide fuel cell interconnect and their chromium diffusion studies [J]. J. Alloy. Compd., 2022, 918: 165377
|
79 |
Shen Z J, Rong J, Yu X H. Mn x Co3- x O4 spinel coatings: controlled synthesis and high temperature oxidation resistance behavior [J]. Ceram. Int., 2020, 46: 5821
|
80 |
Wang B H, Liu J, Cui Z X, et al. Long-term stability of MnCo spinel coatings prepared by electrophoretic deposition at high temperatures [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 972
|
|
王碧辉, 刘 聚, 崔志翔 等. 电泳沉积制备MnCo尖晶石涂层的高温长期稳定性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 972
doi: 10.11902/1005.4537.2023.310
|
81 |
Hosseini N, Abbasi M H, Karimzadeh F, et al. Development of Cu1.3Mn1.7O4 spinel coating on ferritic stainless steel for solid oxide fuel cell interconnects [J]. J. Power Sources, 2015, 273: 1073
|
82 |
Pan Y, Liu Y T, Shi D Y, et al. Fabrication and oxidation behavior of the Cu-Fe spinel coating for SOFC steel interconnect applications [J]. ACS Appl. Energy Mater., 2024, 7: 4950
|
83 |
Zhao M S, Geng S J, Chen G, et al. Thermal conversion and evolution behavior of surface scale on SOFC interconnect steel with sputtered FeCoNi coating [J]. Corros. Sci., 2020, 168: 108561
|
84 |
Zhou J T, Hu X W, Li J L, et al. Cu doped Ni-Co spinel protective coatings for solid oxide fuel cell interconnects application [J]. Int. J. Hydrog. Energy, 2021, 46: 33580
|
85 |
Xiao J H, Zhang W Y, Xiong C Y, et al. Oxidation behavior of Cu-doped MnCo2O4 spinel coating on ferritic stainless steels for solid oxide fuel cell interconnects [J]. Int. J. Hydrog. Energy, 2016, 41: 9611
|
86 |
Zhou J T, Hu X W, Li J L. Effect of Cu on the diffusion behavior and electrical properties of Ni-Co conversion coating for metallic interconnects in solid oxide fuel cells [J]. J. Alloy. Compd., 2021, 887: 161358
|
87 |
Jiang Z, Wen K, Song C, et al. Highly conductive Mn-Co spinel powder prepared by Cu-doping used for interconnect protection of SOFC [J]. Coatings, 2021, 11: 1298
|
88 |
Saeidpour F, Ebrahimifar H. Effect of nanostructure Fe-Ni-Co spinel oxides/Y2O3 coatings on the high-temperature oxidation behavior of Crofer 22 APU stainless steel interconnect [J]. Corros. Sci., 2021, 182: 109280
|
89 |
Tseng H P, Yung T Y, Liu C K, et al. Oxidation characteristics and electrical properties of La-or Ce-doped MnCo2O4 as protective layer on SUS441 for metallic interconnects in solid oxide fuel cells [J]. Int. J. Hydrog. Energy, 2020, 45: 12555
|
90 |
Shahbaznejad H, Ebrahimifar H. A study on the oxidation and electrical behavior of crofer 22 APU solid oxide fuel cell interconnects with Ni-Co-CeO2 composite coating [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 7550
|
91 |
Wang B H, Li K Y, Liu J, et al. Promoting electric conductivity of MnCo spinel coating by doping transition metals (Cu, Fe) or rare-earth elements (La, Y) for solid oxide fuel cell interconnect [J]. Int. J. Hydrog. Energy, 2024, 61: 216
|
92 |
Jin Y Q, Hao G Z, Guo M Y, et al. Ce-doped (Mn, Co)3O4 coatings for solid oxide fuel cell interconnect applications [J]. Ceram. Int., 2022, 48: 34931
|
93 |
Li X C, Chi Y C, Wei S L, et al. The preparation and properties of Ti(Nb)-Si-C coating on the pre-oxidized ferritic stainless steel for solid oxide fuel cell interconnect [J]. Materials, 2024, 17: 632
|
94 |
Li X C, Wang Z K, Wei S L, et al. TiC and (Ti, Nb)3SiC2 based dual-layer coating on SUS430 for solid oxide fuel cell interconnects [J]. Int. J. Hydrog. Energy, 2024, 63: 19
|
95 |
Gan L, Yamamoto T, Murakami H. Microstructure and diffusion behavior in the multilayered oxides formed on a Co-W electroplated ferritic stainless steel followed by oxidation treatment [J]. Acta Mater., 2020, 194: 295
doi: 10.1016/j.actamat.2020.04.048
|
96 |
Gan L, Murakami H, Saeki I. High temperature oxidation of Co-W electroplated type 430 stainless steel for the interconnect of solid oxide fuel cells [J]. Corros. Sci., 2018, 134: 162
|
97 |
Safikhani A, Aminfard M. Effect of W and Ti addition on oxidation behavior and area-specific resistance of Fe-22Cr-0.5Mn ferritic stainless steel for SOFCs interconnect [J]. Int. J. Hydrog. Energy, 2014, 39: 2286
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|