Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 407-415    DOI: 10.11902/1005.4537.2024.262
Current Issue | Archive | Adv Search |
Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas
ZHAO Jie1,2(), XU Guangxu1, ZHANG Hongwei1, LI Jingfa2, LV Ran1, WANG Jialong1, YAN Donglei3
1.School of Safety Engineering, Beijing Institute of Petrochemical Technology, Beijing 102627, China
2.Hydrogen Energy Research Center, Beijing Institute of Petrochemical Technology, Beijing 102627, China
3.Beijing Jinghui Green Hydrogen New Energy Technology Co., Ltd., Beijing 102400, China
Cite this article: 

ZHAO Jie, XU Guangxu, ZHANG Hongwei, LI Jingfa, LV Ran, WANG Jialong, YAN Donglei. Coupling Effect of Hydrogen Embrittlement and Corrosion of X80 Pipeline Steel in Hydrogen-doped Natural Gas. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 407-415.

Download:  HTML  PDF(10831KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Herein, the effect of different hydrogen doping ratio on the hydrogen embrittlement and corrosion behavior of X80 pipeline steel in 4 MPa hydrogen-doped natural gas was investigated by means of insitu hydrogen permeation measurement and stress-strain curve measurement, as well as electrochemical corrosion methods and corrosion morphology characterization etc. The results indicate that in hydrogen-doped natural gas environment, hydrogen permeation follows a "stable-rise-decline" pattern. As the hydrogen doping ratio increases, the penetration time and the time to reach the peak current of the hydrogen permeation were shortened. The mechanical properties of the hydrogen-charged steels showed a decline compared to the blank ones. Besides, with the increasing hydrogen doping ratios, the corrosion current density of X80 pipeline steel increases, the impedance modulus decreases, and the corrosion tendency intensifies. Based on the above research, a failure mode of hydrogen-doped natural gas transmission pipeline steel under the coupled effect of hydrogen embrittlement and corrosion was established.

Key words:  hydrogen-blended natural gas      X80 pipeline steel      in situ hydrogen permeation      electrochemical corrosion     
Received:  20 August 2024      32134.14.1005.4537.2024.262
TE832  
Fund: National Key Research and Development Program(2021YFB4001601)
Corresponding Authors:  ZHAO Jie, E-mail: zhaojie@bipt.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.262     OR     https://www.jcscp.org/EN/Y2025/V45/I2/407

Fig.1  Experimental specimen size
Fig.2  The insitu hydrogen permeation and electrochemical experimental setup
Fig.3  Hydrogen permeation current curves (a) and hydrogen permeation time node (b) of X80 pipeline steel under different hydrogen blended ratios
Blended hydrogen ratioJSS / mol·cm-2·s-1Deff / cm2·s-1CH / mol·cm-3
10%1.78 × 10-120.73 × 10-60.24 × 10-6
20%1.98 × 10-120.87 × 10-60.26 × 10-6
40%2.27 × 10-120.99 × 10-60.29 × 10-6
Table 1  Hydrogen permeation parameters of X80 pipeline steel in different hydrogen blended ratios
Fig.4  Nyquist (a) and Bode (b) plots of X80 pipeline steel at different hydrogen blended ratios
Fig.5  Equivalent circuit used for fitting EIS data
Blended hydrogen ratioRs / Ω·cm2Ccp / S·s n ·cm-2Rct / Ω·cm2Cdl / S·s n ·cm-1Rcp / Ω·cm2RL / Ω·cm2L / H·cm2
10%87.56.13 × 10-5910.97.76 × 10-5198.1496.84 × 104
20%96.98.14 × 10-5898.92.85 × 10-5126.353.56.37 × 104
40%86.35.23 × 10-5886.23.64 × 10-5117.230.54.31 × 104
Table 2  Fitting data values of EIS of X80 pipeline steel under different hydrogen blended ratios
Fig.6  Tafel polarization curves of X80 pipeline steel in different hydrogen blended ratios
Blended hydrogen ratioEcorr / VIcorr / μA·cm-2βa / mV·dec-1βc / mV·dec-1
10%-0.6341.8474.24172.03
20%-0.6363.5177.25182.66
40%-0.6573.3178.16164.67
Table 3  Tafel polarization curve fitting data of X80 pipeline steel in different hydrogen blended ratios
Fig.7  Macroscopic and microscopic morphologies of X80 pipeline steel at 10% (a, d), 20% (b, e) and 40% (c, f) hydrogen ratios
Fig.8  Three-dimensional morphology of corrosion of X80 pipeline steel at 10% (a), 20% (b) and 40% (c) hydrogen blended ratios
Fig.9  XRD patterns of corrosion products of X80 pipeline steel in different hydrogen blended ratios
Fig.10  Stress-strain curves of X80 pipeline steel in different hydrogen blended ratios
Blended hydrogen ratioElongationReduction of area
10%13.8%45.2%
20%14.2%42.8%
40%13.5%41.3%
100%14.6%47.3%
Table 4  Mechanical property parameters of X80 pipeline steel in different hydrogen blended ratios
Fig.11  Overall and internal morphology of the tensile fracture of X80 pipeline steel at 0% (a, e), 10% (b, f), 20% (c, g) and 40% (d, h) hydrogen doping ratios
Fig.12  Schematic diagram of the mechanism model of hydrogen embrittlement and corrosion coupling at different stages in the hydrogen blending environment of natural gas: (a) first stage, (b) second stage, (c) third stage, (d) final stage
1 Li J F, Su Y, Zhang H, et al. Research progresses on pipeline transportation of hydrogen-blended natural gas [J]. Nat. Gas Ind., 2021, 41(4): 137
李敬法, 苏 越, 张 衡 等. 掺氢天然气管道输送研究进展 [J]. 天然气工业, 2021, 41(4): 137
2 Yao C, Chen J, Ming H L, et al. Research progress on hydrogen permeability behavior of pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 209
姚 婵, 陈 健, 明洪亮 等. 管线钢氢渗透行为的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 209
3 Li Y X, Liu C W, Peng H P, et al. Current status and challenges of hydrogen energy transportation methods and technological development [J]. Sci. Technol. Foresinght, 2024, 3(2): 81
李玉星, 刘翠伟, 彭浩平 等. 氢能运输方式与技术发展现状及挑战 [J]. 前瞻科技, 2024, 3(2): 81
doi: 10.3981/j.issn.2097-0781.2024.02.008
4 Cai L X, Bai G Q, Gao X F, et al. Experimental investigation on the hydrogen embrittlement characteristics and mechanism of natural gas-hydrogen transportation pipeline steels [J]. Mater. Res. Express, 2022, 9: 046512
5 Zhao Q, Xing Y Y, Wang X Y, et al. Research status of compatibility of hydrogen-blended natural gas pipeline [J]. Mater. Rep., 2024, 38(12): 128
赵 茜, 邢云颖, 王修云 等. 天然气管道掺氢输送相容性研究现状 [J]. 材料导报, 2024, 38(12): 128
6 Sun J B, Sun C, Zhang G A, et al. Effect of O2 and H2S impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system [J]. Corros. Sci., 2016, 107: 31
7 Liu Y, Dong F T, Qi C W, et al. Progress of hydrogen embrittlement in pipeline steel [J]. China Metall., 2024, 34(7): 11
刘 祎, 董福涛, 齐程伟 等. 管线钢氢脆的研究进展 [J]. 中国冶金, 2024, 34(7): 11
8 Li Y X, Zhang R, Liu C W, et al. Hydrogen embrittlement behavior of typical hydrogen-blended natural gas pipeline steel [J]. Oil Gas Storage Transp., 2022, 41: 732
李玉星, 张 睿, 刘翠伟 等. 掺氢天然气管道典型管线钢氢脆行为 [J]. 油气储运, 2022, 41: 732
9 Liu F, Yang H W, Deng F J. Hydrogen embrittlement behavior of X65 pipeline steel for transmitting hydrogen-enriched compressed natural gas [J]. Oil Gas Storage Transp., 2024, 43: 289
刘 方, 杨宏伟, 邓付洁. 掺氢天然气输送用X65管线钢的氢脆行为 [J]. 油气储运, 2024, 43: 289
10 Du J W, Ming H L, Wang J Q. Research status and progress of hydrogen embrittlement of hydrogen pipelines [J]. Oil Gas Storage Transp., 2023, 42: 1107
杜建伟, 明洪亮, 王俭秋. 输氢管道氢脆研究现状及进展 [J]. 油气储运, 2023, 42: 1107
11 Cao S Y. Corrosion law and protective coating of X65 pipeline steel under multi-factor coupling action [D]. Xi'an: Xi'an University of Technology, 2021
曹思越. 多因素耦合作用下X65管线钢的腐蚀规律及其防护涂层研究 [D]. 西安: 西安理工大学, 2021
12 Shang J, Chen W F, Zheng J Y, et al. Enhanced hydrogen embrittlement of low-carbon steel to natural gas/hydrogen mixtures [J]. Scr. Mater., 2020, 189: 67
13 Silva S C, Silva A B, Ponciano Gomes J A C. Hydrogen embrittlement of API 5L X65 pipeline steel in CO2 containing low H2S concentration environment [J]. Eng. Fail. Anal., 2021, 120: 105081
14 Ye B G. Corrosion and hydrogen permeation behavior of X80 pipeline steel in H2S/CO2 environment [D]. Hangzhou: Zhejiang University of Technology, 2019
叶保国. X80管线钢在H2S/CO2环境中的腐蚀及氢渗透行为研究 [D]. 杭州: 浙江工业大学, 2019
15 Xu X S, Zhu M Z, Wang C L, et al. Effect of FeCO3 corrosion product scale on hydrogen adsorption and permeation of pipeline steel in gaseous hydrogen-blended natural gas transportation [J]. Corros. Sci., 2024, 229: 111880
16 Jack T A, Pourazizi R, Ohaeri E, et al. Investigation of the hydrogen induced cracking behaviour of API 5L X65 pipeline steel [J]. Int. J. Hydrog. Energy, 2020, 45: 17671
17 Folena M C, da Cunha Ponciano J A. Assessment of hydrogen embrittlement severity of an API 5LX80 steel in H2S environments by integrated methodologies [J]. Eng. Fail. Anal., 2020, 111: 104380
18 da Silva S C, de Souza E A, Pessu F, et al. Cracking mechanism in API 5L X65 steel in a CO2-saturated environment [J]. Eng. Fail. Anal., 2019, 99: 273
doi: 10.1016/j.engfailanal.2019.02.031
19 Zhao G X, Liu R R, Ding L Y, et al. Effect of temperature on CO2-induced corrosion behavior of 5Cr steel in a simulated oilfield produced high-temperature and high-pressured water [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 175
赵国仙, 刘冉冉, 丁浪勇 等. 温度对5Cr钢在模拟油田高温高压环境中CO2腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 175
20 Tiegel M C, Martin M L, Lehmberg A K, et al. Crack and blister initiation and growth in purified iron due to hydrogen loading [J]. Acta Mater., 2016, 115: 24
21 Djukic M B, Bakic G M, Zeravcic V S, et al. The synergistic action and interplay of hydrogen embrittlement mechanisms in steels and iron: localized plasticity and decohesion [J]. Eng. Fract. Mech., 2019, 216: 106528
22 Gong P, Turk A, Nutter J, et al. Hydrogen embrittlement mechanisms in advanced high strength steel [J]. Acta Mater., 2022, 223: 117488
[1] LIU Tianle, WEI Boxin, FU Anqing, SU Hang, CHEN Tingshu, WANG Chaoming, WANG Sui. Hydrogen Damage of X80 Pipeline Steel in Hydrogen-doped Gaseous Atmosphere[J]. 中国腐蚀与防护学报, 2025, 45(2): 423-430.
[2] CHEN Kai, DU Yifan, XU Haoyun, LV Liang, DANG Guiming, WANG Yujin, ZHENG Shuqi. Hydrogen Permeation and Hydrogen Embrittlement Sensitivity of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(2): 388-396.
[3] CUI Bolun, ZHAO Jie, LV Ran, LI Jingfa, YU Bo, YAN Donglei. Research Progress in Composite Protection Technology Against Hydrogen-embrittlement and -corrosion for Hydrogen-blended Natural Gas Pipeline[J]. 中国腐蚀与防护学报, 2025, 45(2): 327-337.
[4] SU Zhicheng, ZHANG Xian, CHENG Yan, LIU Jing, WU Kaiming. Comparative Study on Stress Corrosion Cracking Behavior of Ultrafine Bainitic Steel and Q&P Steel with Same Composition in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[5] WANG Yali, GUAN Fang, DUAN Jizhou, ZHANG Lina, YANG Zhengxian, HOU Baorong. Synergistic Inhibition of Rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on Microbiologically Influenced Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[6] GAO Zhiyue, JIANG Bo, FAN Zhibin, WANG Xiaoming, LI Xingeng, ZHANG Zhenyue. Corrosion Behavior of Typical Grounding Materials in Artificial Alkaline Soil Solution[J]. 中国腐蚀与防护学报, 2023, 43(1): 191-196.
[7] CHEN Tingting, WU Xiaolei, HAN Peide. Gradient Nanotwin Structure Prepared by SMAT Technology on S31254 Super Austenitic Stainless Steel Surface and Its Corrosion Behavior in 10%NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 973-978.
[8] LV Yingxi. Analysis of Cl- Corrosion Resistance of High Mo Super Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2022, 42(5): 765-770.
[9] WANG Jiaqi, LI Li, LIU Tingting. Corrosion Behavior of Al-Mn Alloys for Industrial Building Roof[J]. 中国腐蚀与防护学报, 2022, 42(4): 693-698.
[10] WANG Tong, MENG Huimin, GE Pengfei, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Electrochemical Corrosion Behavior of 2Cr-1Ni-1.2Mo-0.2V Steel in NH4H2PO4 Solution[J]. 中国腐蚀与防护学报, 2022, 42(4): 551-562.
[11] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[12] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[13] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[14] Yuan SHI,Zhuji JIN,Guannan JIANG,Zuotao LIU,Zhongzheng ZHOU,Zebei WANG. Electrochemical Corrosion of YG15 Cemented Carbide[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.
[15] Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
No Suggested Reading articles found!