Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (6): 1557-1565    DOI: 10.11902/1005.4537.2024.183
Current Issue | Archive | Adv Search |
Effect of Aging Time on Precipitation of Second Phase and Corrosion Performance of Prismatic Plane of As-forged AZ80 Mg-alloy
WEI Kezheng1, JIANG Wenlong1, GONG Yiwei1, QIU Xin2(), DING Hanlin1, XIANG Chongchen1, WANG Zijian1
1. School of Iron and Steel, Soochow University, Suzhou 215137, China
2. School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China
Cite this article: 

WEI Kezheng, JIANG Wenlong, GONG Yiwei, QIU Xin, DING Hanlin, XIANG Chongchen, WANG Zijian. Effect of Aging Time on Precipitation of Second Phase and Corrosion Performance of Prismatic Plane of As-forged AZ80 Mg-alloy. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1557-1565.

Download:  HTML  PDF(13306KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion resistance of the as-forged AZ80 Mg-alloy subjected to solid solution treatment, and aging treatment for different time was investigated by means of hydrogen evolution method, mass loss method and electrochemical tests etc. Meanwhile, the microstructure and phase composition of the alloy, as well as the morphology and composition of corrosion products were also characterized by OM, SEM and XRD, especially in terms of the effect of microstructure variation and second phase precipitates on the corrosion behavior of the as-aged AZ80 Mg-alloy. The results indicate that varying aging time can effectively adjust the precipitation behavior of the second phase in the forged AZ80 Mg-alloy. Aging treatment can improve not only the corrosion resistance, but also mitigates the anisotropy in the corrosion performance of the Mg-alloy. For the specimen after the peak-aging treatment, a dense second phase with a network structure can be formed in its matrix, which results in the effective improvement of the corrosion resistance and uniformity of the specimen surface. Meanwhile, the difference in average corrosion rate between the cylindrical oriented surface and the basal oriented surface is minimized.

Key words:  AZ80 Mg-alloy      prismatic plane orientation      aging treatment      second phase      corrosion resistance     
Received:  14 June 2024      32134.14.1005.4537.2024.183
ZTFLH:  TG174.2  
Fund: National Natural Science Foundation of China(52174367)
Corresponding Authors:  QIU Xin, E-mail: 407274368@qq.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.183     OR     https://www.jcscp.org/EN/Y2024/V44/I6/1557

Fig.1  EBSD analysis of microstructure and texture of AZ80 Mg-alloy after solution treatment: (a) inverse pole figure, (b) grain size distribution, (c-e) texture in different planes
Fig.2  OM observations of the as-aged alloy for different holding time: (a) 0.5 h, (b) 1 h, (c) 2 h, (d) 4 h
Fig.3  XRD patterns of AZ80 Mg-alloy before and after aging treatment
Fig.4  SEM of the second phase in as-aged alloys held for different times: (a-c) 0.5 h, (d, e) 1 h, (f, g) 2 h, (h, i) 4 h
Fig.5  Size variation diagrams of DP phase and CP phase under different aging processes
Fig.6  Hardness curves of AZ80 Mg-alloy before and after aging treatments
Fig.7  Analysis of the corrosion resistance of as-aged AZ80 Mg-alloy: (a) hydrogen evolution rate, (b) mass loss rate
Fig.8  Analysis of electrochemical performance of as-aged AZ80 Mg-alloy: (a) Nyquist plots, (b) equivalent circuit diagram
SampleRs / Ω·cm2Rct / Ω·cm2Ydl / Ω-1·cm2·s-1ndlRf / Ω·cm2L / HRL / Ω·cm2
0.5 h aging11.9634142.38 × 10-50.7919701939900.04
1 h aging0.3643571.52 × 10-513697882570.01
2 h aging0.3234751.76 × 10-50.8624882580700.01
4 h aging0.4425254.55 × 10-61.081566201.61.52
Table 1  Corresponding values obtained from the data fitting of Nyquist plots and equivalent circuit diagram
Fig.9  Potentiodynamic polarization curves of as-aged samples immersed in 3.5%NaCl solution
SampleEcorr / VIcorr / μA·cm-2
0.5 h aging-1.5215.98
1 h aging-1.515.17
2 h aging-1.487.59
4 h aging-1.5319.73
Table 2  Values of Ecorr and Icorr obtained from the potentiodynamic polarization curves
Fig.10  Corrosion morphologies of as-aged samples immersed in 3.5%NaCl solution for 12 h with different aging time: (a, b) 0.5 h, (c, d) 1 h, (e, f) 2 h, (g, h) 4 h
Fig. 11  Comparisons of the corrosion resistance of AZ80 Mg-alloy with basal plane and prismatic plane after solid solution and aging treatments: (a) hydrogen evolution rate, (b) mass loss rate
1 Zhang S Z, Hu L, Ruan Y T, et al. Influence of bimodal non-basal texture on microstructure characteristics, texture evolution and deformation mechanisms of AZ31 magnesium alloy sheet rolled at liquid-nitrogen temperature [J]. J. Magnes. Alloy., 2023, 11: 2600
2 Sun J, Du W B, Fu J J, et al. A review on magnesium alloys for application of degradable fracturing tools [J]. J. Magnes. Alloy., 2022, 10: 2649
3 Bahmani A, Arthanari S, Seon S K. Formulation of corrosion rate of magnesium alloys using microstructural parameters [J]. J. Magnes. Alloy., 2020, 8: 134
doi: 10.1016/j.jma.2019.12.001
4 Zhao P Y, Ying T, Cao F Y, et al. Designing strategy for corrosion-resistant Mg alloys based on film-free and film-covered models [J]. J. Magnes. Alloy., 2023, 11: 3120
5 Bai J Y, Yang Y, Wen C, et al. Applications of magnesium alloys for aerospace: a review [J]. J. Magnes. Alloy., 2023, 11: 3609
6 Wu J L, Jin L, Dong J, et al. The texture and its optimization in magnesium alloy [J]. J. Mater. Sci. Technol., 2020, 42: 175
doi: 10.1016/j.jmst.2019.10.010
7 Atrens A, Shi Z M, Mehreen S U, et al. Review of Mg alloy corrosion rates [J]. J. Magnes. Alloy., 2020, 8: 989
8 Huang J F, Song G L. Research progress on corrosion testing and analysis of Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 519
(黄居峰, 宋光铃. 镁合金腐蚀测试与分析研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 519)
doi: 10.11902/1005.4537.2023.185
9 Lv X, Deng K K, Wang C J, et al. Effect of SiCp size on microstructure and corrosion properties of cast AZ91 Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 135
(吕 鑫, 邓坤坤, 王翠菊 等. SiCp尺寸对铸态AZ91镁合金显微组织与腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 135)
10 Jiang Q T, Ma X M, Zhang K, et al. Anisotropy of the crystallographic orientation and corrosion performance of high-strength AZ80 Mg alloy [J]. J. Magnes. Alloy., 2015, 3: 309
11 Bland L G, Gusieva K, Scully J R. Effect of crystallographic orientation on the corrosion of magnesium: Comparison of film forming and bare crystal facets using electrochemical impedance and Raman spectroscopy [J]. Electrochim. Acta, 2017, 227: 136
12 Song G L, Mishra R, Xu Z Q. Crystallographic orientation and electrochemical activity of AZ31 Mg alloy [J]. Electrochem. Commun., 2010, 12: 1009
13 Song G L, Xu Z Q. Crystal orientation and electrochemical corrosion of polycrystalline Mg [J]. Corros. Sci., 2012, 63: 100
14 Wei K Z, Jia A, Ding H L, et al. The synergistic effects of texture and continuous precipitates on the corrosion resistance of AZ80 magnesium alloy [J]. Mater. Today Commun., 2024, 38: 108082
15 Xie J S, Zhang J H, Zhang Z, et al. Corrosion mechanism of Mg alloys involving elongated long-period stacking ordered phase and intragranular lamellar structure [J]. J. Mater. Sci. Technol., 2023, 151: 190
doi: 10.1016/j.jmst.2023.01.005
16 Wu P P, Song G L, Zhu Y X, et al. The corrosion of Al-supersaturated Mg matrix and the galvanic effect of secondary phase nanoparticles [J]. Corros. Sci., 2021, 184: 109410
17 Zhao M C, Liu M, Song G L, et al. Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91 [J]. Corros. Sci., 2008, 50: 1939
18 Andreatta F, Apachitei I, Kodentsov A A, et al. Volta potential of second phase particles in extruded AZ80 magnesium alloy [J]. Electrochim. Acta, 2006, 51: 3551
19 Song G L, Bowles A L, StJohn D H. Corrosion resistance of aged die cast magnesium alloy AZ91D [J]. Mater. Sci. Eng., 2004, 366A: 74
20 Song G L, Atrens A, Dargusch M. Influence of microstructure on the corrosion of diecast AZ91D [J]. Corros. Sci., 1998, 41: 249
21 Braszczyńska-Malik K N. Discontinuous and continuous precipitation in magnesium-aluminium type alloys [J]. J. Alloy. Compd., 2009, 477: 870
22 Dubey D, Kadali K, Kancharla H, et al. Effect of precipitate characteristics on the corrosion behavior of a AZ80 magnesium alloy [J]. Met. Mater. Int., 2021, 27: 3282
23 Kim J Y, Byeon J W. Quantitative relation of discontinuous and continuous Mg17Al12 precipitates with corrosion rate of AZ91D magnesium alloy [J]. Mater. Charact., 2021, 174: 111015
24 Kim H S, Kim W J. Enhanced corrosion resistance of ultrafine-grained AZ61 alloy containing very fine particles of Mg17Al12 phase [J]. Corros. Sci., 2013, 75: 228
25 Feliu S. Electrochemical impedance spectroscopy for the measurement of the corrosion rate of magnesium alloys: brief review and challenges [J]. Metals, 2020, 10: 775
26 Zhang S, Liu B C, Li M X, et al. Effect of microstructures and textures on different surfaces on corrosion behavior of an as-extruded ATZ411 magnesium alloy sheet [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1029
27 Pawar S, Slater T J A, Burnett T L, et al. Crystallographic effects on the corrosion of twin roll cast AZ31 Mg alloy sheet [J]. Acta Mater., 2017, 133: 90
[1] LU Tianai, JIANG Wenhao, WU Wei, ZHANG Junxi. Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[2] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[3] MA Jinyao, DONG Nan, GUO Zhensen, HAN Peide. Effect of B and Ce Micro-alloying on Secondary Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[4] CHENG Yonghe, FU Junwei, ZHAO Maomi, SHEN Yunjun. Research Progress on Corrosion Resistance of High-entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[5] HONG Xiaomu, WANG Yongqiang, LI Na, TIAN Kai, DU Juan. Effect of Aging on Microstructures and Localized Corrosion of Custom455 Martensitic Age-hardening Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(5): 1285-1294.
[6] LYU Xiaoming, WANG Zhenyu, HAN En-Hou. Preparation and Corrosion Resistance of Nano-ZrO2 Modified Epoxy Thermal Insulation Coatings[J]. 中国腐蚀与防护学报, 2024, 44(5): 1234-1242.
[7] YIN Jie, GAO Yonghao, YI Fang. Effect of Ag Micro-alloying on Microstructure and Corrosion Behavior of Mg-Zn-Ca Alloy[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
[8] MA Xiaowei, XUE Rongjie, WANG Taotao, YANG Liang, LIU Zhenguang. Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
[9] TIAN Mengzhen, WANG Yong, LI Tao, WANG Chuan, GUO Quanzhong, GUO Jianxi. Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[10] LIN Yi, LIU Tao, GUO Yanbing, RUAN Qing, GUO Zhangwei, DONG Lihua. Research and Development of Welding Materials For Low-temperature Steel and Corrosion Evaluation Methods[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[11] HE Jiaxuan, ZHANG Yutong, GUAN Xudong, TANG Jianhua, HUANG Hai, ZHAO Xuhui, TANG Yuming, ZUO Yu. Present Status and Progress of Corrosion Protection for Microchannel Heat Exchangers of Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[12] GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[13] SHI Chao, LI Jiahao, WANG Rongxiang, ZHANG Bo, ZHOU Lanxin, LIU Guangming, SHAO Yawei. Effect of Different Bias Voltages on Anti-corrosion Properties of Multi-arc Ion Plated Al-coatings on 45# Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[14] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[15] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
No Suggested Reading articles found!