Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (6): 1566-1572    DOI: 10.11902/1005.4537.2024.052
Current Issue | Archive | Adv Search |
Theoretical Study in Adsorption Behavior of S and Cl on Surface and its Effect on Corrosion Performance of γ-FeM(111) (M = Cr, Ni, Mn, Mo, Cu, Ce)
DONG Nan, QIN Weirong, HAN Peide()
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Cite this article: 

DONG Nan, QIN Weirong, HAN Peide. Theoretical Study in Adsorption Behavior of S and Cl on Surface and its Effect on Corrosion Performance of γ-FeM(111) (M = Cr, Ni, Mn, Mo, Cu, Ce). Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1566-1572.

Download:  HTML  PDF(5325KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The adsorption behavior of S and Cl on γ-FeM(111) (M = Cr, Ni, Mn, Mo, Cu, Ce) surface and its influence on the corrosion performance of the latter, as well as the effect of the applied tensile and compressive stress on the surface stability of the γ-FeM(111) were studied by first principles calculation method. The calculation results show that S and Cl are most easily adsorbed at hcp- and fcc-sites on γ-Fe(111) surface, as a result from this, the electronic work function of S and Cl adsorbed surfaces decreases, accordingly, the corrosion resistance becomes weak for the γ-FeM(111) absorbed with S and Cl. The surface of γ-FeM(111) alloyed with M = Cr, Ni, Mn, Mo, Cu, Ce is resistant to Cl corrosion. Among the alloying elements, Mo, Cu and Ce can synergistically improve the resistance to S and Cl corrosion. Under compressive stress, the electron work function of the γ-FeM(111) (M = Cr, Ni, Mn, Mo, Cu, Ce) surface adsorbed with S and Cl increases, while the electron work function decreases under tensile stress. The joint action of S, Cl and tensile stress greatly reduces the surface corrosion resistance.

Key words:  γ-Fe      corrosive media      S      Cl      alloying      stress      electronic work functions      first principles calculation     
Received:  21 February 2024      32134.14.1005.4537.2024.052
ZTFLH:  TG178  
Fund: Natural Science Foundation of Shanxi Province(202203021221085)
Corresponding Authors:  HAN Peide, E-mail: hanpeide@tyut.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.052     OR     https://www.jcscp.org/EN/Y2024/V44/I6/1566

Fig.1  Surface structures of γ-Fe(111) adsorbed by S, Cl atoms at different sites
AdatomInitial configurationFinal configurationAdsorption height / nmAdsorption energies / eV
Stophcp0.160-5.066
bridgehcp0.160-5.066
hcphcp0.160-5.066
fccfcc0.170-4.927
Cltophcp0.184-2.912
bridgefcc0.181-2.950
hcphcp0.184-2.912
fccfcc0.181-2.947
Table 1  Adsorption energies of S and Cl at four possible adsorption sites on γ-Fe(111) and final configurations of these systems
Fig.2  Electronic work functions of S and Cl on γ-Fe(111)
Fig.3  Calculated segregation energies of alloying atoms on γ-Fe (111)
Fig.4  Adsorption energies of S (a) and Cl (b) on γ-FeM(111) (M = Cr, Ni, Mn, Mo, Cu, Ce)
Fig.5  Electronic work functions of S (a) and Cl (b) on γ-FeM(111)(M = Cr, Ni, Mn, Mo, Cu, Ce)
Fig.6  Effects of strain on electronic work functions of S (a) and Cl (b) on γ-FeM(111) (M = Cr, Ni, Mn, Mo, Cu, Ce)
Fig.7  Charge densities of S on γ-Fe(111) and γ-FeM(111) (M = Cu and Mn) under the different strains of -5% (a), 0% (b) and +5% (c)
1 Pu E X, Zheng W J, Xiang J Z, et al. Hot working characteristic of superaustenitic stainless steel 254SMO [J]. Acta Metall. Sin.-Engl. Lett., 2014, 27: 313
2 Cui Z Y, Wang L W, Ni H T, et al. Influence of temperature on the electrochemical and passivation behavior of 2507 super duplex stainless steel in simulated desulfurized flue gas condensates [J]. Corros. Sci., 2017, 118: 31
3 Gunay H B, Ghods P, Isgor O B, et al. Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS [J]. Appl. Surf. Sci., 2013, 274: 195
4 Tavares S S M, Silva V G, Pardal J M, et al. Investigation of stress corrosion cracks in a UNS S32750 super duplex stainless steel [J]. Eng. Fail. Anal., 2013, 35: 88
5 Da Costa A T, De Oliveira M C L, Antunes R A. Interplay between the composition of the passive film and the corrosion resistance of citric acid‐passivated AISI 316L stainless steel [J]. Surf. Interface Anal., 2021, 53: 374
6 Wu S W, Yang T, Cao B X, et al. Multicomponent Ni-rich high-entropy alloy toughened with irregular-shaped precipitates and serrated grain boundaries [J]. Scr. Mater., 2021, 204: 114066
7 Sueptitz R, Uhlemann M, Gebert A, et al. Corrosion, passivation and breakdown of passivity of neodymium [J]. Corros. Sci., 2010, 52: 886
8 Tranchida G, Di Franco F, Santamaria M. Role of molybdenum on the electronic properties of passive films on stainless steels [J]. J. Electrochem. Soc., 2020, 167: 061506
9 Laha K, Kyono J, Shinya N. An advanced creep cavitation resistance Cu-containing 18Cr-12Ni-Nb austenitic stainless steel [J]. Scr. Mater., 2007, 56: 915
10 Kim S M, Kim J S, Kim K T, et al. Effect of Ce addition on secondary phase transformation and mechanical properties of 27Cr-7Ni hyper duplex stainless steels [J]. Mater. Sci. Eng., 2013, 573A: 27
11 Dong F, Wu J G, Huo P. Effect of rare earth element Ce on corrosion-resisting properties of austenite stainless steel 204Cu [J]. Spec. Steel, 2015, 36: 56
(董 方, 吴建光, 霍 普. 稀土元素Ce对204Cu奥氏体不锈钢耐腐蚀性能的影响 [J]. 特殊钢, 2015, 36: 56)
12 Zhang R Z, He J S, Xu S G, et al. The roles of Ce and Mn on solidification behaviors and mechanical properties of 7mo super austenitic stainless steel [J]. J Mater. Res. Technol., 2023, 22: 1238
13 Dou Y P, Han S K, Wang L W, et al. Characterization of the passive properties of 254SMO stainless steel in simulated desulfurized flue gas condensates by electrochemical analysis, XPS and ToF-SIMS [J]. Corros. Sci., 2020, 165: 108405
14 Zhang S C, Li H B, Jiang Z H, et al. Chloride- and sulphate-induced hot corrosion mechanism of super austenitic stainless steel S31254 under dry gas environment [J]. Corros. Sci., 2020, 163: 108295
15 Brewick P T, DeGiorgi V G, Geltmacher A B, et al. Modeling the influence of microstructure on the stress distributions of corrosion pits [J]. Corros. Sci., 2019, 158: 108111
16 Scott P M, Combrade P. General corrosion and stress corrosion cracking of alloy 600 in light water reactor primary coolants [J]. J. Nucl. Mater., 2019, 524: 340
17 Yang J, Zhang Y, Dong N, et al. Segregation behavior of alloying elements at NbC/fcc-Fe interface and effects of boron [J]. Rare Met. Mater. Eng., 2022, 51: 2056
18 Guo G Y, Wang H H. Gradient-corrected density functional calculation of elastic constants of Fe, Co and Ni in bcc, fcc and hcp structures [J]. Chin. J. Phys., 2000, 38: 949
19 Häglund J, Guillerment A F, Grimvall G, et al. Theory of bonding in transition-metal carbides and nitrides [J]. Phys. Rev., 1993, 48B: 11685
20 Lee S J, Lee Y K, Soon A. The austenite/ɛ martensite interface: A first-principles investigation of the fcc Fe(1 1 1)/hcp Fe(0 0 0 1) system [J]. Appl. Surf. Sci., 2012, 258: 9977
21 Han C, Zhang C L, Liu X L, et al. DFT study of the effects of interstitial impurities on the resistance of Cr-doped γ-Fe(111) surface dissolution corrosion [J]. J. Mol. Model., 2015, 21: 206
22 Zhao X X, Tao X M, Mi Y M, et al. The geometry structure and electronic states of chlorine on Cu(111) surface [J]. J. Atom. Mol. Phys., 2009, 26: 150
(赵新新, 陶向明, 宓一鸣 等. 氯原子在Cu(111)表面的吸附结构和电子态 [J]. 原子与分子物理学报, 2009, 26: 150)
23 Błoński P, Kiejna A, Hafner J. Theoretical study of oxygen adsorption at the Fe(1 1 0) and (1 0 0) surfaces [J]. Surf. Sci., 2005, 590: 88
24 Niu Y N, Dong N, Liu S, et al. Effects of different alloying elements M (M = Fe, Ni, Mn, Si, Mo, Cu, Y) on Cr2O3 with Cl: a first-principles study [J]. J. Iron Steel Res. Int., 2021, 28: 613
25 Li D Y, Li W. Electron work function: a parameter sensitive to the adhesion behavior of crystallographic surfaces [J]. Appl. Phys. Lett., 2001, 79: 4337
26 Kong M, Wu J J, Han T R, et al. Corrosion mechanism of T1 phase in Al-Cu-Li alloy: First-principles calculations [J]. Acta Phys. Sin., 2020, 69: 027101
(孔 敏, 吴静静, 韩天茹 等. 第一性原理研究Al-Cu-Li合金中T1相的腐蚀机理 [J]. 物理学报, 2020, 69: 027101)
27 Zhang Y, Ma J Y, Li H B, et al. Improved corrosion resistance of super austenite stainless steel by B-induced nucleation of Laves phase [J]. Corros. Sci., 2023, 213: 110974
28 Kiejna A, Wachowicz E. Segregation of Cr impurities at bcc iron surfaces: First-principles calculations [J]. Phys. Rev., 2008, 78B: 113403
29 Li W, Cai M, Wang Y, et al. Influences of tensile strain and strain rate on the electron work function of metals and alloys [J]. Scr. Mater., 2006, 54: 921
[1] YU Wenjuan, WANG Tiancong, ZHAO Dongyang, XIANG Xueyun, WU Hang, WANG Wen. Lifetime Prediction Model for Barrier-type Corrosion-resistant Coating[J]. 中国腐蚀与防护学报, 2024, 44(6): 1617-1624.
[2] LI Kaiyang, ZHAI Yunlong, HU Xinyu, WU Hong, LIU Bin, XING Shaohua, HOU Jian, ZHANG Fan, ZHANG Naiqiang. Research Progress on High Temperature Corrosion of Eutectic High Entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[3] ZHAN Fuyuan, LIU Xuanyi, HAUNG Shifu, LIU Shuaiqi, XU Yuanyuan, PAN Xigui, HE Hualin, LIU Guangming. Corrosion Behavior of SA210C Steel Beneath Deposit Film of Mixed Salts Na2SO4-NaCl in Air at 600oC[J]. 中国腐蚀与防护学报, 2024, 44(6): 1656-1662.
[4] WEI Kezheng, JIANG Wenlong, GONG Yiwei, QIU Xin, DING Hanlin, XIANG Chongchen, WANG Zijian. Effect of Aging Time on Precipitation of Second Phase and Corrosion Performance of Prismatic Plane of As-forged AZ80 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
[5] ZHANG Zhuanli, DAI Hailong, ZHANG Zhe, SHI Shouwen, CHEN Xu. Stress Corrosion Cracking Behavior of 316L in Hydrofluoric Acid Solution[J]. 中国腐蚀与防护学报, 2024, 44(6): 1633-1640.
[6] WANG Chengtao, SHEN Guanyi, XU Shaoyi, LI Wei, WANG Yuqiao, WANG Shuchen, WEN Dongdong, LI Pengyu. Numerical Simulation of Corrosion of Buried Metal Pipeline Under AC Interference Based on Physical Field Coupling[J]. 中国腐蚀与防护学报, 2024, 44(6): 1573-1580.
[7] SU Zhicheng, ZHANG Xian, CHENG Yan, LIU Jing, WU Kaiming. Comparative Study on Stress Corrosion Cracking Behavior of Ultrafine Bainitic Steel and Q&P Steel with Same Composition in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[8] SUN Qiongqiong, JIA Xiquan, XU Zhenlin, HE Yizhu, FAN Guangwei, ZHANG Wei, LI Huan. Structure and Adhesion of Oxide Scales on Casting Billet of 304 and 430 Stainless Steels[J]. 中国腐蚀与防护学报, 2024, 44(6): 1649-1655.
[9] LIANG Zihao, YING Zongquan, LIU Meimei, YANG Shuai. Prediction Method for Reinforced Concrete Corrosion-induced Crack Based on Stacking Integrated Model Fusion[J]. 中国腐蚀与防护学报, 2024, 44(6): 1601-1609.
[10] DONG Zheng, MAO Yongqi, MENG Zhou, CHEN Xiangxiang, FU Chuanqing, LU Chentao. Passivation Behavior of Steel Bar Subjected to Tensile Stress in Simulated Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
[11] WENG Shuo, MENG Chao, LUO Linghua, YUAN Yiwen, ZHAO Lihui, FENG Jinzhi. Evolution of Corrosion Damage Characteristics of AA7075-T651 Al-alloy Under Mechanical-chemical Interaction Based on Cellular Automata Method[J]. 中国腐蚀与防护学报, 2024, 44(6): 1507-1517.
[12] LU Tianai, JIANG Wenhao, WU Wei, ZHANG Junxi. Surface Modification of Corrosion-resistant Cast Iron Based on Functional Requirements of Grounding Materials[J]. 中国腐蚀与防护学报, 2024, 44(6): 1443-1453.
[13] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[14] ZHANG Yani, WANG Simin, FAN Bing. Corrosion and Passivation Behavior of TC4 Ti-alloy in a Simulated Downhole Liquid in High-temperature and High-pressed O2 + CO2 Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[15] ZHANG Jinlong, FU Guangyan, NING Likui, LIU Enze, TAN Zheng, TONG Jian, ZHENG Zhi. Hot Corrosion Behavior of a Nickel Based Single Crystal High Temperature Alloy Subjected to Different Heat Treatments[J]. 中国腐蚀与防护学报, 2024, 44(6): 1625-1632.
No Suggested Reading articles found!