Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 479-488    DOI: 10.11902/1005.4537.2024.101
Current Issue | Archive | Adv Search |
Microbiologically Influenced Corrosion of Cu-bearing Steel Welded Joints for Petroleum Pipes
YAN Bingchuan1, ZENG Yunpeng2,3, ZHANG Ning1, SHI Xianbo2(), YAN Wei2
1.PipeChina Storage and Transportation Technology Company, Tianjin 300457, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.China Special Equipment Inspection & Research Institute Yangtze Delta Branch, Jiaxing 314000, China
Cite this article: 

YAN Bingchuan, ZENG Yunpeng, ZHANG Ning, SHI Xianbo, YAN Wei. Microbiologically Influenced Corrosion of Cu-bearing Steel Welded Joints for Petroleum Pipes. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 479-488.

Download:  HTML  PDF(22132KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Welding joints are not only weak areas of conventional corrosion, but also preferred locations for microbiologically influenced corrosion (MIC). In this article, MIC behavior of different regions of the Cu-bearing steel welded joint, including the base metal (BM), heat affected zone (HAZ), and weld metal (WM), was studied by immersion test in SRB containing solution with electrochemical measurement.Results showed that a uniform and dense bacterial biofilm was formed and covered on the BM specimen, while a loose porous one on WM and HAZ specimens. The electrochemical results indicated that the (Rct + Rf) value of BM specimen increased steadily with the prolonging immersion time, while that of WM and HAZ specimens fluctuated. As a result, a few of shallow pits were observed on the surface of BM specimen, but many small and deep pits distributed in clusters appeared on the surface of WM and HAZ specimens. Analysis suggested that the microstructure inhomogeneity of WM and HAZ specimens provides sites for bacterial selective adhesion, resulting in biofilm with microscopically heterogeneous surface morphology, which promote local corrosion. Thus, the MIC resistance of WM and HAZ specimens is lower than that of BM specimen.

Key words:  Cu-bearing steel      welded joint      microstructure      microbiologically influenced corrosion     
Received:  28 March 2024      32134.14.1005.4537.2024.101
TG142.1  
Fund: National Natural Science Foundation of China(52201093)
Corresponding Authors:  SHI Xianbo, E-mail: xbshi@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.101     OR     https://www.jcscp.org/EN/Y2025/V45/I2/479

MaterialCMnCuNiTiNbPSSiMoAlFe
Base metal0.0280.521.351.100.0110.0170.0030.0020.13-0.01Bal.
Filler wire0.0330.561.831.94-0.018---0.10-Bal.
Table 1  Chemical compositions of base steel and filler wire
Fig.1  Schematic diagram of sampling locations for (a) mechanical properties evaluations and (b) microstructure, MIC test in welded joints
Fig.2  Macro-morphology of the weld joint. Marks (a-f) on the image are the corresponding locations to acquire high-magnification image
Fig.3  Microstructures of on the welded joint before aging condition at the position shown in Fig.2: (a, b) BM, (c, d) HAZ, (e, f) WM
Fig.4  Microstructures of different locations on the welded joint after aging: (a, b) BM, (c, d) HAZ, (e, f) WM
SampleYS / MPaUTS / MPaEL / %Akv / J
Base metal-as-rolled40349133.531
Base metal-550 oC/2 h54263327.529
Weld joint-as-rolled41951523.521
Weld joint-550 oC/2 h52563020.517
Table 2  Tensile strength and impact energy of base steel and weld joint
Fig.5  CLSM images of different areas on the weld joint immersed in SRB inoculated medium for 14 d: (a) BM, (b) WM, (c) HAZ
Fig.6  Live/dead sessile cells count on the surfaces of base steel and different areas of the weld joint immersed in SRB inoculated medium for 14 d
Fig.7  Nyquist plots of base steel and different areas of the weld joint in the SRB-inoculated medium: (a) BM, (b) WM, (c) HAZ
Fig.8  Equivalent circuits model used to fit EIS data
AreaTime / dRs / Ω·cm2Yf / S·s n ·cm-2nfRf / Ω·cm2Ydl / S·s n ·cm-2ndlRct / Ω·cm2χ2
BM13395.77 × 10-40.6071953.61 × 10-40.9243.70 × 1052.97 × 10-5
43236.55 × 10-40.6291472.43 × 10-40.9113.85 × 1055.82 × 10-4
72686.72 × 10-40.64093.32.19 × 10-40.9144.02 × 1051.29 × 10-4
102467.23 × 10-40.63273.51.97 × 10-40.9164.06 × 1051.03 × 10-4
142385.54 × 10-40.68844.21.77 × 10-40.9004.39 × 1053.23 × 10-4
WM13203.02 × 10-40.7791014.26 × 10-40.8972.33 × 1059.16 × 10-4
43052.85 × 10-40.81366.83.23 × 10-40.8773.32 × 1056.94 × 10-4
72467.07 × 10-40.76088.27.62 × 10-40.8683.35 × 1041.16 × 10-4
102312.30 × 10-40.73137.72.81 × 10-40.8803.14 × 1053.28 × 10-4
141351.46 × 10-30.6602743.09 × 10-30.9388.86 × 1041.02 × 10-4
HAZ12793.40 × 10-40.76087.33.85 × 10-40.8663.45 × 1059.38 × 10-4
42623.79 × 10-40.75588.33.92 × 10-40.8703.47 × 1051.92 × 10-4
72556.99 × 10-40.7221256.47 × 10-40.8934.09 × 1041.38 × 10-4
102133.00 × 10-40.79246.03.23 × 10-40.8782.20 × 1054.98 × 10-4
141481.43 × 10-40.7031933.03 × 10-30.9379.46 × 1041.21 × 10-4
Table 3  Fitting results of EIS data
Fig.9  Time dependence of (Rct+ Rf) values of base steel and different area of the weld joint immersed in SRB inoculated medium for 14 d
Fig.10  Corrosion surface morphologies and the corresponding EDS analysis of base steel and different areas of the weld joint after exposed in SRB inoculated medium for 14 d: (a-c) BM, (d-f) WM, (g-i) HAZ. Red arrows denote the corrosion products. Yellow circles denote the EDS analysis location
Fig.11  Pit morphologies of the base steel and different areas of the weld joint after exposed in SRB inoculated medium for 14 d: (a-c) BM, (d-f) WM, (g-i) HAZ
1 Shi X B, Yang C G, Yan W, et al. Microbiologically influenced corrosion of pipeline steels [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 9
史显波, 杨春光, 严 伟 等. 管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2019, 39: 9
doi: 10.11902/1005.4537.2018.147
2 Lin J, Zhu G W, Sun C, et al. A review of microbiologically influenced corrosion of metals [J]. Corros. Sci. Prot. Technol., 2001, 13: 279
林 建, 朱国文, 孙 成 等. 金属的微生物腐蚀 [J]. 腐蚀科学与防护技术, 2001, 13: 279
3 Yang K, Shi X B, Yan W, et al. Novel Cu-bearing pipeline steels: A new strategy to improve resistance to microbiologically influenced corrosion for pipeline steels [J]. Acta Metall. Sin., 2020, 56: 385
doi: 10.11900/0412.1961.2019.00372
杨 柯, 史显波, 严 伟 等. 新型含Cu管线钢—提高管线耐微生物腐蚀性能的新途径 [J]. 金属学报, 2020, 56: 385
4 Shi X B, Yan W, Shan Y Y, et al. Research and development of new pipeline steels with resistance to microbiologically influenced corrosion [J]. J. Iron Steel Res., 2020, 32: 1044
doi: 10.13228/j.boyuan.issn1001-0963.20200212
史显波, 严 伟, 单以银 等. 耐微生物腐蚀管线钢新材料的研究与发展 [J]. 钢铁研究学报, 2020, 32: 1044
doi: 10.13228/j.boyuan.issn1001-0963.20200212
5 Shi X B, Yan W, Xu D K, et al. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34: 2480
doi: 10.1016/j.jmst.2018.05.020
6 Yu H B, Chen X, Liu Q P, et al. Anti microbiological corrosion performance of Cu-containing antibacterial pipeline steel [J]. Corros. Prot., 2020, 41(3): 10, 21
于浩波, 陈 旭, 刘乔平 等. 含Cu抗菌管线钢的抑制微生物腐蚀性能 [J]. 腐蚀与防护, 2020, 41(3): 10, 21
7 Qiao Q, Cheng G X, Wu W, et al. Failure analysis of corrosion at an inhomogeneous welded joint in a natural gas gathering pipeline considering the combined action of multiple factors [J]. Eng. Fail. Anal., 2016, 64: 126
8 Jiang X, Xu K, Guan X R, et al. A comparative study on the corrosion of gathering pipelines in two sections of a shale gas field [J]. Eng. Fail. Anal., 2021, 121: 105179
9 Zhu L Y. Microbiological influenced corrosion of X80 pipeline and weld microstructure [D]. Shenyang: Shenyang Ligong University, 2020
祝李洋. X80管线钢及其焊缝组织的微生物腐蚀 [D]. 沈阳: 沈阳理工大学, 2020
10 Wang Q, Ma Q, Wu T Q, et al. Selective corrosion of X80 pipeline steel welded joints induced by sulfate-reducing bacteria [A]. The 11th National Conference on Corrosion and Protection [C]. Shenyang, 2021: 763
王 琴, 马 乔, 吴堂清 等. X80管线钢焊接接头的选择性SRB腐蚀 [A]. 第十一届全国腐蚀与防护大会论文摘要集 [C]. 沈阳, 2021: 763
11 Wang Q, Zhou X B, Ma Q, et al. Selected corrosion of X80 pipeline steel welded joints induced by Desulfovibrio desulfuricans [J]. Corros. Sci., 2022, 202: 110313
12 Shi X B, Zeng Y P, Ren Y, et al. Effect of nano-sized Cu-rich phase on microbiological corrosion behavior of Cu and Ni-added steel for oil country tubular goods [J]. ISIJ Int., 2024, 64: 1047
13 Zeng Y P, Yan W, Shi X B, et al. Effect of copper content on the MIC resistance in pipeline steel [J]. Acta Metall. Sin., 2024, 60: 43
doi: 10.11900/0412.1961.2022.00007
曾云鹏, 严 伟, 史显波 等. Cu含量对管线钢耐微生物腐蚀性能的影响 [J]. 金属学报, 2024, 60: 43
doi: 10.11900/0412.1961.2022.00007
14 Liu Z, Wei J S, Cui B, et al. Weld structure and mechanical properties of 590 MPa high strength steel thin slab in vertical position double-sided arc welding [J]. Mater. Sci. Technol., 2016, 24(5): 34
刘 政, 魏金山, 崔 冰 等. 590 MPa级高强钢双面双弧立焊焊缝组织性能 [J]. 材料科学与工艺, 2016, 24(5): 34
15 Cui B, Peng Y, Zhao L, et al. Effects of weld thermal cycle on microstructure and properties of 1000MPa grade weld metal [J]. Mater. Sci. Technol., 2016, 24(1): 44
崔 冰, 彭 云, 赵 琳 等. 焊接热循环对1000MPa级焊缝金属组织性能的影响 [J]. 材料科学与工艺, 2016, 24(1): 44
16 Wang Y D, Shang J L, Sun B, et al. Effect of different welding process on microstructure and properties of P92 steel welded joint [J]. J. Iron Steel Res., 2023, 35: 1152
doi: 10.13228/j.boyuan.issn1001-0963.20220344
王宇冬, 尚建路, 孙 斌 等. 不同焊接工艺对P92钢焊接接头组织性能的影响 [J]. 钢铁研究学报, 2023, 35: 1152
doi: 10.13228/j.boyuan.issn1001-0963.20220344
17 Ma G, Gu Y H, Zhao J. Research progress on sulfate-reducing bacteria induced corrosion of steels [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 289
马 刚, 顾艳红, 赵 杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 289
18 Ke N, Ni Y Y, He J Q, et al. Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 278
柯 楠, 倪莹莹, 何嘉淇 等. 微生物胞外聚合物引起的金属腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 278
19 Li Q S, Wang J H, Xing X T, et al. Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions [J]. Bioelectrochemistry, 2018, 122: 40
doi: S1567-5394(17)30592-3 pmid: 29547738
20 Gu T Y, Jia R, Unsal T, et al. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35: 631
doi: 10.1016/j.jmst.2018.10.026
21 De Romero M, Duque Z, Rodríguez L, et al. A study of microbiologically induced corrosion by sulfate-reducing bacteria on carbon steel using hydrogen permeation [J]. Corrosion, 2005, 61: 68
22 Li K, Whitfield M, Van Vliet K J. Beating the bugs: roles of microbial biofilms in corrosion [J]. Corros. Rev., 2013, 31: 73
23 Kim K T, Tsuchiya H, Hanaki K, et al. Modification of rust layer on carbon steel with reactive actions of metallic cations for improved corrosion protectiveness [J]. Corrosion, 2020, 76: 335
24 Wang L W, Liu Z Y, Cui Z Y, et al. In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel [J]. Corros. Sci., 2014, 85: 401
25 Walsh D, Pope D, Danford M, et al. The effect of microstructure on microbiologically influenced corrosion [J]. JOM, 1993, 45: 22
26 Zhu J Y, Xu L N, Feng Z C, et al. Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel [J]. Corros. Sci., 2016, 111: 391
[1] JIANG Huifang, LIU Yanghao, LIU Ying, LI Yingchao, YU Haobo, ZHAO Bo, CHEN Xi. Mechanism of Microbial Corrosion of J55 Steel in Hydrogen-containing Environments in Underground Hydrogen Storage Facilities[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
[2] ZHAI Xiwei, LIU Shiyi, WANG Li, JIA Ruiling, ZHANG Huixia. Effect of Applied Load on Corrosion Behavior of 5383 Al-alloy Welded Joints[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[3] FAN Jiajun, DONG Lijin, MA Cheng, ZHANG Ziyu, MING Hongliang, WEI Boxin, PENG Qing, WANG Qinying. Research Progress on Hydrogen-assisted Fatigue Crack Growth of Pipeline Steels in Hydrogen-blended Natural Gas Environment[J]. 中国腐蚀与防护学报, 2025, 45(2): 296-306.
[4] LIU Guoqiang, FENG Changjie, XIN Li, MA Tianyu, CHANG Hao, PAN Yuxuan, ZHU Shenglong. Preparation and Microstructure of Diffused Ti-Al-Si Coatings on Ti-6Al-4V Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 69-80.
[5] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[6] WANG Yali, GUAN Fang, DUAN Jizhou, ZHANG Lina, YANG Zhengxian, HOU Baorong. Synergistic Inhibition of Rhamnolipid and 2, 2-dibromo-3-hypoazopropionamide on Microbiologically Influenced Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[7] CHENG Yonghe, FU Junwei, ZHAO Maomi, SHEN Yunjun. Research Progress on Corrosion Resistance of High-entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[8] ZHAO Qian, ZHANG Jie, MAO Ruirui, MIAO Chunhui, BIAN Yafei, TENG Yue, TANG Wenming. Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[9] LIN Yi, LIU Tao, GUO Yanbing, RUAN Qing, GUO Zhangwei, DONG Lihua. Research and Development of Welding Materials For Low-temperature Steel and Corrosion Evaluation Methods[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[10] ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[11] LIU Jiuyun, DONG Lijin, ZHANG Yan, WANG Qinying, LIU Li. Research Progress on Sulfide Stress Corrosion Cracking of Dissimilar Weld Joints in Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[12] PEI Yingying, GUAN Fang, DONG Xucheng, ZHANG Ruiyong, DUAN Jizhou, HOU Baorong. Effect of Desulfovibrio Bizertensis SY-1 on Corrosive Behavior of Metal Materials Under Cathodic Polarization[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[13] KE Nan, NI Yingying, HE Jiaqi, LIU Haixian, JIN Zhengyu, LIU Hongwei. Research Progress of Metal Corrosion Caused by Extracellular Polymeric Substances of Microorganisms[J]. 中国腐蚀与防护学报, 2024, 44(2): 278-294.
[14] DENG Zhibin, HU Xiao, LIU Yingyan, YUE Hang, ZHANG Qian, TANG Haiping, LU Rui. Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[15] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
No Suggested Reading articles found!