Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (2): 469-478    DOI: 10.11902/1005.4537.2024.338
Current Issue | Archive | Adv Search |
Initial Corrosion Behavior of Several Pure Irons and Steels in 3.5%NaCl Solution
YANG Zhenyu1,2, JI Chao1,2, GUO Liya1,2(), XU Run1,2, PENG Wei1,2, ZHAO Hongshan1,2, WEI Xicheng1,2, DONG Han1,2
1.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2.Zhejiang Institute of Advanced Materials, Shanghai University, Jiaxing 314113, China
Cite this article: 

YANG Zhenyu, JI Chao, GUO Liya, XU Run, PENG Wei, ZHAO Hongshan, WEI Xicheng, DONG Han. Initial Corrosion Behavior of Several Pure Irons and Steels in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 469-478.

Download:  HTML  PDF(14445KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The initial corrosion behavior of three pure irons of different purity 3N2, 4N2 and 5N2, carbon steel Q235B, weathering steel SPA-H and stainless steel 304L in 3.5%NaCl solution was comparatively investigated by means of immersion test, electrochemical measurements, scanning electron microscopy, 3D profiling microscope and laser confocal Raman microscope. Results showed that according to the electrochemical impedance value, the corrosion rate of the six test materials from low to high is as following: 304L < 5N2 < 4N2 < 3N2 < SPA-H < Q235B. The scanning electron microscopy observation and 3D profiling microscope measurement revealed that the three pure irons 3N2, 4N2 and 5N2 exhibited localized corrosion; while the 3N2 presented the deepest corrosion pits. The corrosion products mainly consisted of Fe3O4, γ-FeOOH and α-FeOOH for all the six test materials.

Key words:  pure iron      electrochemistry      corrosion pits      corrosion products     
Received:  14 October 2024      32134.14.1005.4537.2024.338
TG174  
Fund: National Natural Science Foundation of China(42276214);National Natural Science Foundation of China(52201078);Shanghai Sailing Program(21YF1412800)
Corresponding Authors:  GUO Liya, E-mail: liya_guo@shu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.338     OR     https://www.jcscp.org/EN/Y2025/V45/I2/469

MaterialsCSiMnPSCuCrNiFe
Q235B steel0.150.190.280.0180.0070.030.040.01Bal.
SPA-H steel0.090.040.450.0730.0140.280.360.01Bal.
304L stainless steel0.020.391.060.0350.002-18.398.01Bal.
Table 1  Chemical compositions of three test steels
Fig.1  Microstructures of Q235B (a) and SPA-H (b) steels, 304L stainless steel (c), and three pure irons with grades 3N2 (d), 4N2 (e) and 5N2 (f)
Materials(Mn, Ca, Mg) x S y(Al, Ca, Mg, Si) x O y(Mn, Ca, Mg) x S y -(Al, Ca, Mg, Si) z O w
Q235B steel2602343
SPA-H steel344128132
304L stainless steel41356
3N2 pure iron-12-
4N2 pure iron---
5N2 pure iron---
Table 2  Numbers of the inclusions in the test materials
Fig.2  XPS analysis results of the surfaces of Q235B steel (a), SPA-H steel (b), 304L stainless steel (c, d), 3N2 pure iron (e), 4N2 pure iron (f) and 5N2 pure iron (g) test materials immersed in 3.5%NaCl solution for 1 h
Fig.3  Proportions of Fe 2p components and the ratios of Fe2+ and Fe3+ in the oxide scales formed on six test materials during immersion in 3.5%NaCl solution for 1 h
Fig.4  OCP values of six test materials after immersion in 3.5%NaCl solution for 1 h
Fig.5  EIS of Q235B stainless steel and SPA-H steels, 3N2, 4N2 and 5N2 pure irons (a) and 304L stainless steel (b) immersed in 3.5% NaCl solution for 1 h, and corresponding equivalent circuit (c)
MaterialsRs / Ω·cm2CPEox × 10-4 / Ω-1·cm-2·S nnRox / Ω·cm2CPEdl × 10-4 / Ω-1·cm-2·S nnRct / Ω·cm2RP / Ω·cm2
Q235B steel8.514.50.7446.70.90.85408.7455.4
SPA-H steel9.616.40.7015.64.50.71511.6527.5
3N2 pure iron4.853.60.81430.775.20.70251.4682.1
4N2 pure iron5.211.10.76770.1229.50.91170.7940.8
5N2 pure iron4.87.20.82882.5291.00.92270.81153.3
304L stainless steel11.60.60.997800.00.10.94229600.0237400.0
Table 3  Fitting data of EIS of six test materials immersed in 3.5%NaCl solution for 1 h
Fig.6  Potentiodynamic polarization curves of six test materials after immersion in 3.5%NaCl solution for 1 h
MaterialsEcorr / VIcorr / μA·cm-2
Q235B steel-0.708.84
SPA-H steel-0.636.14
3N2 pure iron-0.5721.34
4N2 pure iron-0.4214.18
5N2 pure iron-0.558.34
304L stainless steel-0.120.05
Table 4  Corrosion potentials and corrosion current densities of six test materials after immersion in 3.5% NaCl solution for 1 h
Fig.7  SEM images (a) and 3D morphologies (b) of Q235B steel (a1, b1), SPA-H steel (a2, b2), 304L stainless steel (a3, b3), 3N2 pure iron (a4, b4), 4N2 pure iron (a5, b5) and 5N2 pure iron (a6, b6) test materials after immersion in 3.5%NaCl solution for 1 h and then rust removal
MaterialsMax pit depth / μmAverage pit depth / μmAverage pit width / μmNumber of pits
Q235B steel29.87.4 ± 6.182.7 ± 43.543
SPA-H steel19.17.3 ± 3.411.2 ± 8.598
304L stainless steel8.13.4 ± 1.56.2 ± 3.230
3N2 pure iron26.18.3 ± 5.657.4 ± 20.464
4N2 pure iron22.54.9 ± 2.632.5 ± 18.467
5N2 pure iron20.45.6 ± 2.618.5 ± 14.548
Table 5  Characteristics of pits of six test materials after immersion in 3.5%NaCl solution for 1 h
Fig.8  Raman spectra of Q235B steel (a), SPA-H steel (b), 3N2 pure iron (c), 4N2 pure iron (d) and 5N2 pure iron (e) after immersion in 3.5%NaCl solution for 1 h
1 Ai Z Y, Sun W, Jiang J Y. Recent status of research on corrosion of low alloy corrosion resistant steel and analysis on existing eroblems [J]. Corros. Sci. Prot. Technol., 2015, 27: 525
艾志勇, 孙 伟, 蒋金洋. 低合金耐蚀钢筋锈蚀研究现状及存在的问题分析 [J]. 腐蚀科学与防护技术, 2015, 27: 525
doi: 10.11903/1002.6495.2014.407
2 Huang J Z, Huang T, Yang L J, et al. Electrochemical properties and offshore corrosion behavior of SAF 2304 duplex stainless steel [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 630
黄家针, 黄 涛, 杨丽景 等. SAF 2304双相不锈钢电化学性能及其近海腐蚀行为 [J]. 中国腐蚀与防护学报, 2023, 43: 630
doi: 10.11902/1005.4537.2022.217
3 Yu P P, Zhou X J, Mukhtar A, et al. Research status and prospect of high purity iron preparation [J]. China Metall., 2023, 33(6): 9
于盼盼, 周雪娇, Mukhtar A 等. 高纯铁制备的研究现状及展望 [J]. 中国冶金, 2023, 33(6): 9
4 Khan L, Sato K, Okuyama S, et al. Ultra-high-purity iron is a novel and very compatible biomaterial [J]. J. Mech. Behav. Biomed. Mater., 2020, 106: 103744
5 Yu Y C, Kang J, Feng L, et al. Pitting corrosion behavior and corrosion resistance of high strength seismic reinforcement rebar with trace rare earth [J]. J. Chin. Soc. Rare Earths, 2022, 40: 853
于彦冲, 康 健, 奉 亮 等. 稀土微合金化高强抗震钢筋点蚀行为及耐蚀性能研究 [J]. 中国稀土学报, 2022, 40: 853
6 Zhao Q C, Wang X F, Pan Z M, et al. Effects of rare earth elements addition on mechanical properties and corrosion behavior of GCr15 bearing steel under different heat treatment conditions [J]. Corros. Commun., 2023, 9: 65
7 Liu L H, Qi H B, Lu Y P, et al. A review on weathering steel research [J]. Corros. Sci. Prot. Technol., 2003, 15(2): 86
刘丽宏, 齐慧滨, 卢燕平 等. 耐大气腐蚀钢的研究概况 [J]. 腐蚀科学与防护技术, 2003, 15(2): 86
8 Xiao K, Dong C F, Li X G, et al. Study on accelerated corrosion tests for carbon steels and weathering steels [J]. Equip. Environ. Eng., 2007, 4(3): 5
肖 葵, 董超芳, 李晓刚 等. 碳钢和耐候钢加速腐蚀实验研究 [J]. 装备环境工程, 2007, 4(3): 5
9 Fajardo S, Bastidas D M, Criado M, et al. Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides [J]. Electrochim. Acta, 2014, 129: 160
10 Wang J J, Chen R N, Hu H C, et al. Effect of Al on microstructure and weathering resistance of 4Cr1.5Ni weathering steel [J]. Iron Steel, 2023, 58(2): 126
王进建, 陈润农, 胡惠超 等. 铝对4Cr1.5Ni耐候钢组织和耐候性的影响 [J]. 钢铁, 2023, 58(2): 126
doi: 10.13228/j.boyuan.issn0449-749x.20220475
11 Zhou L J, Yang S W. Atmospheric corrosion of steels for marine engineering and development of weathering steels [J]. China Metall., 2022, 32(8): 7
周鲁军, 杨善武. 海洋工程用钢的大气腐蚀与耐候钢的发展 [J]. 中国冶金, 2022, 32(8): 7
12 Zhang X, Liu K, Zhu J, et al. Corrosion behaviors of weathering steel and carbon steel in vertical direction [J]. China Metall., 2023, 33(1): 81
张 旭, 刘 锟, 朱 嘉 等. 耐候钢和碳钢在竖直方向上的腐蚀行为 [J]. 中国冶金, 2023, 33(1): 81
13 Liu G Q, Zhang D F, Chen H X, et al. Electrochemical corrosion behavior of 2304 duplex stainless steel in a simulated pore solution in reinforced concrete serving in marine environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 204
刘国强, 张东方, 陈昊翔 等. 2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 204
14 Wang J Y, Zhou X J, Wang H L, et al. Initial corrosion behavior of carbon steel and high strength steel in South China sea atmosphere [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 237
王靖羽, 周学杰, 王洪伦 等. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 237
15 Yang D H, Song Q C. Study on microstructure and mechanical properties of S355J2W weather resistance steel annealing with different processes [J]. Hot Work. Technol., 2013, 42(12): 235
杨德惠, 宋全超. S355J2W耐候钢不同退火工艺下的组织性能研究 [J]. 热加工工艺, 2013, 42(12): 235
16 Abiko K. Why do we study ultra-high purity base metals? [J]. Mater. Trans. JIM, 2000, 41: 233
17 Feng M R, Qiu J Z, Zhou X M, et al. Influence of flow on the corrosion behavior of pure iron in simulated geological repository conditions [J]. Surf. Interfaces, 2024, 46: 103998
18 Xu W C, Street S R, Amri M, et al. In-situ synchrotron studies of the effect of nitrate on iron artificial pits in chloride solutions: II. on the effect of carbon [J]. J. Electrochem. Soc., 2015, 162: C243
19 Xu W C, Street S R, Amri M, et al. In-situ synchrotron studies of the effect of nitrate on iron artificial pits in chloride solutions: I. On the structures of salt layers [J]. J. Electrochem. Soc., 2015, 162: C238
20 Xu W C, Yu F, Liu M. Influence of solid corrosion products in corrosion pits on growth of corrosion pits [J]. Mater. Prot., 2017, 50(11): 5
徐玮辰, 于 菲, 刘 敏. 钢铁点蚀坑内腐蚀产物对点蚀扩展的影响 [J]. 材料保护, 2017, 50(11): 5
21 Peng W, Gao X Q, Fan Z W, et al. Characteristics and high purification development of pure iron [J]. Iron Steel, 2021, 56(12): 109
彭 伟, 高新强, 范增为 等. 纯铁的特征及高纯化发展 [J]. 钢铁, 2021, 56(12): 109
22 Man C, Dong C F, Liang J X, et al. Characterization of the passive film and corrosion of martensitic AM355 stainless steel [J]. Anal. Lett., 2017, 50: 1091
23 Lei X W, Wang H Y, Wang N, et al. Passivity of martensitic stainless steel in borate buffer solution: Influence of sulfide ion [J]. Appl. Surf. Sci., 2019, 478: 255
24 Bolli E, Fava A, Ferro P, et al. Cr segregation and impact fracture in a martensitic stainless steel [J]. Coatings, 2020, 10: 843
25 Shi J J, Ming J, Wang D Q, et al. Improved corrosion resistance of a new 6%Cr steel in simulated concrete pore solution contaminated by chlorides [J]. Corros. Sci., 2020, 174: 108851
26 Li G, Evitts R, Boulfiza M. On the corrosion parameters acquired through potentiodynamic scans of carbon steel rebar in simulated pore solution and mortar [J]. Constr. Build. Mater., 2023, 409: 134160
27 Tang Y H, Li B, Ji P F, et al. Benefit of the rust layer formed on AlMn lightweight weathering steel in industrial atmosphere [J]. Constr. Build. Mater., 2023, 394: 132308
28 Chamritski I, Burns G. Infrared- and raman-active phonons of magnetite, maghemite, and hematite: A computer simulation and spectroscopic study [J]. J. Phys. Chem., 2005, 109B: 4965
29 Wang P X, Wang P J, Li Q, et al. Study of rust layer evolution in Q345 weathering steel utilizing electric resistance probes [J]. Corros. Sci., 2023, 225: 111595
30 Yang Y, Cheng X Q, Zhao J B, et al. A study of rust layer of low alloy structural steel containing 0.1%Sb in atmospheric environment of the Yellow Sea in China [J]. Corros. Sci., 2021, 188: 109549
31 Mi T W, Wang J J, McCague C, et al. Application of Raman Spectroscopy in the study of the corrosion of steel reinforcement in concrete: a critical review [J]. Cem. Concr. Compos., 2023, 143: 105231
32 Han J B, Young D, Colijn H, et al. Chemistry and structure of the passive film on mild steel in CO2 corrosion environments [J]. Ind. Eng. Chem. Res., 2009, 48: 6296
33 Zhang Y, Zhang X, Chen S Y, et al. Corrosion behavior and passive film properties of nickel-based alloy in phosphoric acid [J]. Corros. Commun., 2023, 9: 77
34 Hayden S C, Chisholm C, Grudt R O, et al. Localized corrosion of low-carbon steel at the nanoscale [J]. npj Mater. Degrad., 2019, 3: 17
35 Han Y L, Li J, Guo L Y, et al. Localized corrosion behavior induced by MnS inclusions in HRB400E rebar steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1255
韩宇龙, 李 健, 郭丽雅 等. 螺纹钢中MnS夹杂物诱发的局部腐蚀行为 [J]. 中国腐蚀与防护学报, 2024, 44: 1255
doi: 10.11902/1005.4537.2023.337
36 Sun Y T, Tan X, Lan R L, et al. Mechanisms of inclusion-induced pitting of stainless steels: a review [J]. J. Mater. Sci. Technol., 2024, 168: 143
37 Hu J Z, Ren Y, Zhang J, et al. Review on pitting corrosion of steel induced by MnS inclusions [J]. China Metall., 2022, 32(11): 18
胡锦榛, 任 英, 张 继 等. MnS夹杂物诱发钢材点蚀综述 [J]. 中国冶金, 2022, 32(11): 18
38 Ghods P, Burkan Isgor O, Bensebaa F, et al. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution [J]. Corros. Sci., 2012, 58: 159
39 Wang L W, Tian H Y, Gao H, et al. Electrochemical and XPS analytical investigation of the accelerative effect of bicarbonate/carbonate ions on AISI 304 in alkaline environment [J]. Appl. Surf. Sci., 2019, 492: 792
40 Ghods P, Isgor O B, Brown J R, et al. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties [J]. Appl. Surf. Sci., 2011, 257: 4669
41 Li S X, Hihara L H. The comparison of the corrosion of ultrapure iron and low-carbon steel under NaCl-electrolyte droplets [J]. Corros. Sci., 2016, 108: 200
42 Miyake K, Ohashi K, Komuro M. Ultrapure iron film formation by mass-separated ion beam deposition method [J]. MRS Online Proc. Library, 1992, 279: 787
43 Kiyoshi Miyake K M, Kenya Ohashi K O. Superior corrosion resistance of ion beam deposited iron film [J]. Jpn. J. Appl. Phys., 1993, 32: L120
44 Zhang T Y, Hao L J, Jiang Z H, et al. Investigation of rare earth (RE) on improving the corrosion resistance of Zr-Ti deoxidized low alloy steel in the simulated tropic marine atmospheric environment [J]. Corros. Sci., 2023, 221: 111335
45 Chen R N, Li Z D, Cao Y G, et al. Initial corrosion behavior and local corrosion origin of 9%Cr alloy steel in Cl- containing environment [J]. Acta Metall. Sin., 2023, 59: 926
陈润农, 李昭东, 曹燕光 等. 9%Cr合金钢在含Cl-环境中的初期腐蚀行为及局部腐蚀起源 [J]. 金属学报, 2023, 59: 926
doi: 10.11900/0412.1961.2021.00597
[1] JIN Zhenting, SONG Qining, LIU Qi, PENG Chunlan, XU Nan, LU Qiqing, BAO Yefeng, ZHAO Lijuan, ZHAO Jianhua. Long-term Corrosion Behavior of Three Cu-alloys in 3.5%NaCl Solutions with Different pH Values[J]. 中国腐蚀与防护学报, 2025, 45(2): 506-514.
[2] ZHANG Yani, WANG Simin, FAN Bing. Corrosion and Passivation Behavior of TC4 Ti-alloy in a Simulated Downhole Liquid in High-temperature and High-pressed O2 + CO2 Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[3] XIE Wenzhen, WANG Zhenyu, HAN En-Hou. Passivation Behavior of Corrosion Resistant Rebar Steels as Bare Steels in a Simulated Concrete Pore Fluid and as Rebar Steels Embedded in Concrete Made of Cement and Sea-sand in a Simulated Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1454-1464.
[4] FENG Shaoyu, ZHOU Zhaohui, YANG Lanlan, QIAO Yanxin, WANG Jinlong, WANG Fuhui. Electrochemical and Wear Behavior of TC4 Alloy in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1243-1254.
[5] ZHU Liyang, CHEN Junquan, ZHANG Xinxin, DONG Zehua, CAI Guangyi. Research Progress of Effect of Magnetic Field on Metal Corrosion[J]. 中国腐蚀与防护学报, 2024, 44(5): 1117-1124.
[6] PENG Wenshan, XING Shaohua, QIAN Yao, LIN Cunguo, HOU Jian, ZHANG Dalei. Effect of Flowing Seawater on Corrosion Characteristics of Passivation Film on TA2 Pure-Ti Pipes[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[7] XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[8] DAI Wei, LIU Yuanyuan, TU Wenrui, SUN Yangting, LI Jin, JIANG Yiming. Corrosion Behavior of Ag/Sn Galvanic Couple at Applied Potential[J]. 中国腐蚀与防护学报, 2024, 44(3): 700-706.
[9] LI Wenjie, CHE Xiaoyu, TANG Yongcun, LIU Guangming, TIAN Wenming, HE Hualin, LIU Chenhui. Effect of Plastic Deformation Processing on Corrosion Behavior of Pure Zinc in a Leaching Solution of Soil at Tianjin[J]. 中国腐蚀与防护学报, 2024, 44(2): 497-504.
[10] WANG Tongtong, ZHANG Juanrui, GAO Yun, GAO Rongjie. Preparation of Lotus Root-like TiO2 Nanotube Arrays in NH4F-(NH4)2SO4 Composite Electrolyte and Its Photogenerated Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2024, 44(2): 389-395.
[11] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[12] LENG Wenjun, SHI Xizhao, XIN Yonglei, YANG Yange, WANG Li, CUI Zhongyu, HOU Jian. Correlation of Corrosion Information Aquired by Indoor Acceleration Testing and by Real Low Temperature Marine Atmosphere Exposure in Polar Region for Ni-Cr-Mo-V Steel[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
[13] WANG Pengjie, SONG Yuhao, FAN Lin, DENG Kuanhai, LI Zhonghui, MEI Zongbin, GUO Lei, LIN Yuanhua. Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2024, 44(1): 59-70.
[14] HE Xun, WU Mengxue, YIN Li, ZHU Jin. Damage Evolution and Fatigue Life of Steel Wire with Double Corrosion Pits for Suspension Bridge under Wind- and Traffic-loads[J]. 中国腐蚀与防护学报, 2023, 43(6): 1358-1366.
[15] PAN Dailong, SI Xiaodong, LV Jinhong. Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
No Suggested Reading articles found!