|
|
Microbiologically Influenced Corrosion of Cu-bearing Steel Welded Joints for Petroleum Pipes |
YAN Bingchuan1, ZENG Yunpeng2,3, ZHANG Ning1, SHI Xianbo2( ), YAN Wei2 |
1.PipeChina Storage and Transportation Technology Company, Tianjin 300457, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.China Special Equipment Inspection & Research Institute Yangtze Delta Branch, Jiaxing 314000, China |
|
Cite this article:
YAN Bingchuan, ZENG Yunpeng, ZHANG Ning, SHI Xianbo, YAN Wei. Microbiologically Influenced Corrosion of Cu-bearing Steel Welded Joints for Petroleum Pipes. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 479-488.
|
Abstract Welding joints are not only weak areas of conventional corrosion, but also preferred locations for microbiologically influenced corrosion (MIC). In this article, MIC behavior of different regions of the Cu-bearing steel welded joint, including the base metal (BM), heat affected zone (HAZ), and weld metal (WM), was studied by immersion test in SRB containing solution with electrochemical measurement.Results showed that a uniform and dense bacterial biofilm was formed and covered on the BM specimen, while a loose porous one on WM and HAZ specimens. The electrochemical results indicated that the (Rct + Rf) value of BM specimen increased steadily with the prolonging immersion time, while that of WM and HAZ specimens fluctuated. As a result, a few of shallow pits were observed on the surface of BM specimen, but many small and deep pits distributed in clusters appeared on the surface of WM and HAZ specimens. Analysis suggested that the microstructure inhomogeneity of WM and HAZ specimens provides sites for bacterial selective adhesion, resulting in biofilm with microscopically heterogeneous surface morphology, which promote local corrosion. Thus, the MIC resistance of WM and HAZ specimens is lower than that of BM specimen.
|
Received: 28 March 2024
32134.14.1005.4537.2024.101
|
|
Fund: National Natural Science Foundation of China(52201093) |
Corresponding Authors:
SHI Xianbo, E-mail: xbshi@imr.ac.cn
|
1 |
Shi X B, Yang C G, Yan W, et al. Microbiologically influenced corrosion of pipeline steels [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 9
|
|
史显波, 杨春光, 严 伟 等. 管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2019, 39: 9
doi: 10.11902/1005.4537.2018.147
|
2 |
Lin J, Zhu G W, Sun C, et al. A review of microbiologically influenced corrosion of metals [J]. Corros. Sci. Prot. Technol., 2001, 13: 279
|
|
林 建, 朱国文, 孙 成 等. 金属的微生物腐蚀 [J]. 腐蚀科学与防护技术, 2001, 13: 279
|
3 |
Yang K, Shi X B, Yan W, et al. Novel Cu-bearing pipeline steels: A new strategy to improve resistance to microbiologically influenced corrosion for pipeline steels [J]. Acta Metall. Sin., 2020, 56: 385
doi: 10.11900/0412.1961.2019.00372
|
|
杨 柯, 史显波, 严 伟 等. 新型含Cu管线钢—提高管线耐微生物腐蚀性能的新途径 [J]. 金属学报, 2020, 56: 385
|
4 |
Shi X B, Yan W, Shan Y Y, et al. Research and development of new pipeline steels with resistance to microbiologically influenced corrosion [J]. J. Iron Steel Res., 2020, 32: 1044
doi: 10.13228/j.boyuan.issn1001-0963.20200212
|
|
史显波, 严 伟, 单以银 等. 耐微生物腐蚀管线钢新材料的研究与发展 [J]. 钢铁研究学报, 2020, 32: 1044
doi: 10.13228/j.boyuan.issn1001-0963.20200212
|
5 |
Shi X B, Yan W, Xu D K, et al. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34: 2480
doi: 10.1016/j.jmst.2018.05.020
|
6 |
Yu H B, Chen X, Liu Q P, et al. Anti microbiological corrosion performance of Cu-containing antibacterial pipeline steel [J]. Corros. Prot., 2020, 41(3): 10, 21
|
|
于浩波, 陈 旭, 刘乔平 等. 含Cu抗菌管线钢的抑制微生物腐蚀性能 [J]. 腐蚀与防护, 2020, 41(3): 10, 21
|
7 |
Qiao Q, Cheng G X, Wu W, et al. Failure analysis of corrosion at an inhomogeneous welded joint in a natural gas gathering pipeline considering the combined action of multiple factors [J]. Eng. Fail. Anal., 2016, 64: 126
|
8 |
Jiang X, Xu K, Guan X R, et al. A comparative study on the corrosion of gathering pipelines in two sections of a shale gas field [J]. Eng. Fail. Anal., 2021, 121: 105179
|
9 |
Zhu L Y. Microbiological influenced corrosion of X80 pipeline and weld microstructure [D]. Shenyang: Shenyang Ligong University, 2020
|
|
祝李洋. X80管线钢及其焊缝组织的微生物腐蚀 [D]. 沈阳: 沈阳理工大学, 2020
|
10 |
Wang Q, Ma Q, Wu T Q, et al. Selective corrosion of X80 pipeline steel welded joints induced by sulfate-reducing bacteria [A]. The 11th National Conference on Corrosion and Protection [C]. Shenyang, 2021: 763
|
|
王 琴, 马 乔, 吴堂清 等. X80管线钢焊接接头的选择性SRB腐蚀 [A]. 第十一届全国腐蚀与防护大会论文摘要集 [C]. 沈阳, 2021: 763
|
11 |
Wang Q, Zhou X B, Ma Q, et al. Selected corrosion of X80 pipeline steel welded joints induced by Desulfovibrio desulfuricans [J]. Corros. Sci., 2022, 202: 110313
|
12 |
Shi X B, Zeng Y P, Ren Y, et al. Effect of nano-sized Cu-rich phase on microbiological corrosion behavior of Cu and Ni-added steel for oil country tubular goods [J]. ISIJ Int., 2024, 64: 1047
|
13 |
Zeng Y P, Yan W, Shi X B, et al. Effect of copper content on the MIC resistance in pipeline steel [J]. Acta Metall. Sin., 2024, 60: 43
doi: 10.11900/0412.1961.2022.00007
|
|
曾云鹏, 严 伟, 史显波 等. Cu含量对管线钢耐微生物腐蚀性能的影响 [J]. 金属学报, 2024, 60: 43
doi: 10.11900/0412.1961.2022.00007
|
14 |
Liu Z, Wei J S, Cui B, et al. Weld structure and mechanical properties of 590 MPa high strength steel thin slab in vertical position double-sided arc welding [J]. Mater. Sci. Technol., 2016, 24(5): 34
|
|
刘 政, 魏金山, 崔 冰 等. 590 MPa级高强钢双面双弧立焊焊缝组织性能 [J]. 材料科学与工艺, 2016, 24(5): 34
|
15 |
Cui B, Peng Y, Zhao L, et al. Effects of weld thermal cycle on microstructure and properties of 1000MPa grade weld metal [J]. Mater. Sci. Technol., 2016, 24(1): 44
|
|
崔 冰, 彭 云, 赵 琳 等. 焊接热循环对1000MPa级焊缝金属组织性能的影响 [J]. 材料科学与工艺, 2016, 24(1): 44
|
16 |
Wang Y D, Shang J L, Sun B, et al. Effect of different welding process on microstructure and properties of P92 steel welded joint [J]. J. Iron Steel Res., 2023, 35: 1152
doi: 10.13228/j.boyuan.issn1001-0963.20220344
|
|
王宇冬, 尚建路, 孙 斌 等. 不同焊接工艺对P92钢焊接接头组织性能的影响 [J]. 钢铁研究学报, 2023, 35: 1152
doi: 10.13228/j.boyuan.issn1001-0963.20220344
|
17 |
Ma G, Gu Y H, Zhao J. Research progress on sulfate-reducing bacteria induced corrosion of steels [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 289
|
|
马 刚, 顾艳红, 赵 杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 289
|
18 |
Ke N, Ni Y Y, He J Q, et al. Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 278
|
|
柯 楠, 倪莹莹, 何嘉淇 等. 微生物胞外聚合物引起的金属腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 278
|
19 |
Li Q S, Wang J H, Xing X T, et al. Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions [J]. Bioelectrochemistry, 2018, 122: 40
doi: S1567-5394(17)30592-3
pmid: 29547738
|
20 |
Gu T Y, Jia R, Unsal T, et al. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35: 631
doi: 10.1016/j.jmst.2018.10.026
|
21 |
De Romero M, Duque Z, Rodríguez L, et al. A study of microbiologically induced corrosion by sulfate-reducing bacteria on carbon steel using hydrogen permeation [J]. Corrosion, 2005, 61: 68
|
22 |
Li K, Whitfield M, Van Vliet K J. Beating the bugs: roles of microbial biofilms in corrosion [J]. Corros. Rev., 2013, 31: 73
|
23 |
Kim K T, Tsuchiya H, Hanaki K, et al. Modification of rust layer on carbon steel with reactive actions of metallic cations for improved corrosion protectiveness [J]. Corrosion, 2020, 76: 335
|
24 |
Wang L W, Liu Z Y, Cui Z Y, et al. In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel [J]. Corros. Sci., 2014, 85: 401
|
25 |
Walsh D, Pope D, Danford M, et al. The effect of microstructure on microbiologically influenced corrosion [J]. JOM, 1993, 45: 22
|
26 |
Zhu J Y, Xu L N, Feng Z C, et al. Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel [J]. Corros. Sci., 2016, 111: 391
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|