Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (4): 957-964    DOI: 10.11902/1005.4537.2024.022
Current Issue | Archive | Adv Search |
Research and Development of Welding Materials For Low-temperature Steel and Corrosion Evaluation Methods
LIN Yi1, LIU Tao2(), GUO Yanbing2, RUAN Qing2, GUO Zhangwei2, DONG Lihua2
1. China National Nuclear Power Co., Ltd., Beijing 100000, China
2. Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
Cite this article: 

LIN Yi, LIU Tao, GUO Yanbing, RUAN Qing, GUO Zhangwei, DONG Lihua. Research and Development of Welding Materials For Low-temperature Steel and Corrosion Evaluation Methods. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 957-964.

Download:  HTML  PDF(7380KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion performance of marine engineering welded structures is of significance for the offshore engineering's safety, however, for that there is hardly any scientific and systematic evaluation methods. Herein, two kinds of welded structures are designed and made with two solder alloys of different composition. Then the corrosion performance of the two coupons were comparatively evaluated by immersion in an artificial seawater containing corrosive bacteria. It is surprisingly found that macroscopic testing results (such as electrochemical impedance, massless testing, etc.) and microscopic testing results (micro-area electrochemical scanning) did not exactly match each other. Therefore, it is not rigorous to evaluate the corrosion resistance of welded structural parts only via the conventional electrochemical method or massless testing, but the microscopic electrochemical testing method should also be applied. Combined with the macroscopic and microscopic corrosion tests, we can be more accurately matching and selecting the base metal and solder of the welded structure, which will guide us to improve its overall seawater corrosion resistance.

Key words:  welded joint      corrosion resistance      corrosive bacteria     
Received:  14 January 2024      32134.14.1005.4537.2024.022
ZTFLH:  TG172  
Corresponding Authors:  LIU Tao, E-mail: liutao@shmtu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.022     OR     https://www.jcscp.org/EN/Y2024/V44/I4/957

Weld wireBase metalDimension of the base metal / mmWeld tilt Angle / (°)
BHEH36-III/XUN-128ElectroplatingDH36Nδ20×500×20010
Butt weldingEH36δ20×500×15030
BHEH40-III/XUN-127ElectroplatingDH36Nδ20×500×20010
Butt weldingE40δ20×500×15030
Table 1  Mechanical properties of SAW weld wires
Welding wireGrade

YS

MPa

UTS

MPa

Elongation

%

Impact absorbing energy

J

BHEH36-III/XUN-128Deposited metal5Y≥375490-660≥22≥47 (-60oC)
Welding metal-≥490-≥47 (-60oC)
BHEH40-III/XUN-127Deposited metal5Y40M≥400510-690≥22≥47 (-60oC)
Welding metal-≥510-≥47 (-60oC)
Table 2  Welding parameters of SAW
Welding wireGrade

YS

MPa

UTS

MPa

Elongation

%

Impact absorbing energy

J

BHEH36-III/XUN-128Deposited metal5Y≥375490-660≥22≥34 (-60oC)
Welding metal-≥490-≥34 (-60oC)
BHEH40-III/XUN-127Deposited metal5Y40M≥400510-690≥22≥39 (-60oC)
Welding metal-≥510-≥39 (-60oC)
Table 3  Mechanical properties of GMAW
Size / mmElectrodeCurrent / AVoltage / VGasSpeed of welding / mm·min-1
Φ1.2DC230-29024-30Ar + 20%CO2360-400
Φ1.2DC230-29024-30Ar + 20%CO2360-400
Table 4  Welding Parameters of GMAW
Welding wire

Wire diameter

mm

Welding

flux/

Gas

Size

mm

Gauge

length

mm

YS

MPa

UTS

MPa

Elongation

%

Impact absorbing

energy -60℃

J

FH40(5Y40)-

121

98% + 2%CO2

--≥400510-690≥22

≥39 (SAW)

≥47 (GMAW)

FH36(5Y36)-

121

98% + 2%CO2

--≥375490-660≥22

≥39 (SAW)

≥47 (GMAW)

Table 5  Standards of mechanical properties of welding wire
Fig.1  Nyquist diagram of two types of welded joints immersed in seawater for 1 d (a), 5 d (b), 9 d (c) and 15 d (d)
TimeYf / S·s n ·cm-2nRf / Ω·cm2Ydl / S·s n ·cm-2nRct / Ω·cm2
A-1 d1.1 × 10-60.81236.35.7 × 10-40.741614
A-5 d3.0 × 10-70.78291.52.0 × 10-30.653371
A-9 d2.3 × 10-70.88322.12.2 × 10-30.602665
A-15 d3.0 × 10-70.89415.22.6 × 10-30.722215
B-1 d7.2 × 10-80.83210.36.5 × 10-40.811054
B-5 d2.0 × 10-70.82219.23.8 × 10-30.71880
B-9 d2.2 × 10-30.67225.31.4 × 10-30.67706
B-15 d1.8 × 10-30.57309.86.6 × 10-30.651989
Table 6  Fitting parameters of EIS
Fig.2  Rp values of welded joint samples soaked for 1, 5, 9, and 15 d
Fig.3  Average corrosion rate of two kinds of welded joint samples for 30 d
Fig.4  SVET charts of welded joint-A before (a) and after (b) immersion for 30 d
Fig.5  SVET test charts of welded joint-B before (a) and after (b) immersion for 30 d
Fig.6  White light interference diagrams of weld joint-A after immersion for 30 d: (a) surface and (b) three-dimensional morphologies of weld metal, (c) surface and (d) three-dimensional morphologies of base metal
Fig.7  White light interference diagrams of weld joint-B after immersion for 30 d: (a) surface and (b) three-dimensional morphologies of weld metal, (c) surface and (d) three-dimensional morphologies of base metal
Fig.8  White light interference data of two types of welded joints after immersion for 30 d
[1] Zhao B. What does the normalization of Arctic navigation mean? [J]. China Ship Surv., 2019, (9): 39
赵 博. 北极航行常态化意味着什么? [J]. 中国船检, 2019, (9): 39
[2] Chen L Q. Polar expeditions for arctic and Antarctic sciences in the 21st century [J]. Chin. J. Nat., 2009, 31: 81
陈立奇. 21世纪的极地科学探索——面临的机遇和挑战 [J]. 自然杂志, 2009, 31: 81
[3] Agarkov S, Motina T, Matviishin D. The environmental impactcaused by developing energy resources in the Arctic region [J]. IOP Conf. Ser. Earth Environ. Sci., 2018, 180: 012007.
[4] Nie F J, Zhang W B, Cao Y, et al. New progress on the exploration of the important mineral resources of the Arctic circle and its adjacent region [J]. Geol. Sci. Technol. Inform., 2013, 32(5): 1
聂凤军, 张伟波, 曹 毅 等. 北极圈及邻区重要矿产资源找矿勘查新进展 [J]. 地质科技情报, 2013, 32(5): 1
[5] Wang X L, Yu Q, Liu E H, et al. Current status and development trends of ship equipment and material testing under polar conditions [J]. Chin. Metrol., 2018, (8): 78
王勋龙, 于 青, 刘二虎 等. 极地条件下船舶装备与材料检测现状及发展趋势 [J]. 中国计量, 2018, (8): 78
[6] Yue H, Wu X F, Zhao X Y. Current status and development trends of polar ships [J]. Chin. Ship Surv., 2020, (7): 58
岳 宏, 吴笑风, 赵宇欣. 极地船舶发展现状及研制趋势 [J]. 中国船检, 2020, (7): 58
[7] Xue S B, Wang B, Zhang L, et al. Development of green welding technology in China during the past decade [J]. Mater. Rep., 2019, 33: 2813
薛松柏, 王 博, 张 亮 等. 中国近十年绿色焊接技术研究进展 [J]. 材料导报, 2019, 33: 2813
[8] Leng W J, Shi X Z, Xin Y L, et al. Correlation of corrosion information aquired by indoor acceleration testing and by real low temperature marine atmosphere exposure in polar region for Ni-Cr-Mo-V steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 91
冷文俊, 石西召, 辛永磊 等. 极地低温海洋大气环境下Ni-Cr-Mo-V钢腐蚀行为与室内外相关性研究 [J]. 中国腐蚀与防护学报, 2024, 44: 91
[9] Yang H F, Yuan Z Z, Li J, et al. Effect of Ni content on corrosion behavior of cu-bearing aged weldable steels in a simulated tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1022
杨海峰, 袁志钟, 李 健 等. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1022
doi: 10.11902/1005.4537.2022.330
[10] Huang G Q, Han B, Yang H Y. Seawater corrosion behavior of welding joints of steels for marine applications [J]. Equip. Environ. Eng., 2015, 12(4): 11
黄桂桥, 韩 冰, 杨海洋. 海洋用钢焊接接头的海水腐蚀行为研究 [J]. 装备环境工程, 2015, 12(4): 11
[11] Hu J Z, Lan W J, Deng P C, et al. Corrosion behavior of E690 steel in tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1140
胡杰珍, 蓝文杰, 邓培昌 等. E690钢在热带海洋大气环境下的初期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1140
doi: 10.11902/1005.4537.2022.388
[12] Zhang J, Li H X, Yin Z Q, et al. Research progress on corrosion of welded joints [J]. Corros. Sci. Prot. Technol., 2018, 30: 661
张 婧, 李海新, 殷子强 等. 焊接结构件的腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2018, 30: 661
[13] Zhu Y F, Liu Z Y, Xie D, et al. Advancements of the core fundamental technologies and strategies of China regarding the research and development on polar ships [J]. Bull. Natl. Nat. Sci. Found. China, 2015, 29: 178
朱英富, 刘祖源, 解 德 等. 极地船舶核心关键基础技术现状及我国发展对策 [J]. 中国科学基金, 2015, 29: 178
[14] Xi Y Z. Canadian navy polar class PC-5 arctic offshore patrol ships [J]. Ordnance Knowl., 2010, (5): 48
西言早. 加拿大PC-5型极地近海巡逻舰 [J]. 兵器知识, 2010, (5): 48
[15] He Q Q, Xia X, Liu Y M. Research on the development trend of ice breaking technology of polar icebreaker [J]. China Water Trans., 2020, (6): 76
何纤纤, 夏 鑫, 刘雨鸣. 极地破冰船的破冰技术发展趋势研究 [J]. 中国水运, 2020, (6): 76
[16] Liu Y, Chen Y M, Wang J M. Effect of welding technology on properties of steel welded joints in offshore platform [J]. Hot Work. Technol., 2017, 46(11): 9
刘 岩, 陈永满, 王建明. 焊接工艺对海洋平台用钢焊接接头性能的影响 [J]. 热加工工艺, 2017, 46(11): 9
[17] Yang M. Shipbuilding Foundation[M]. Beijing: National Defense Industry Press, 2005
杨 敏. 船舶制造基础[M]. 北京: 国防工业出版社, 2005
[18] Wang L D. Properties of welding joints of low temperature steel and their low temperature toughness [D]. Shanghai: Shanghai Jiao Tong University, 2014
王璐达. 低温钢焊接接头性能及强韧机理分析 [D]. 上海: 上海交通大学, 2014
[1] MA Xiaowei, XUE Rongjie, WANG Taotao, YANG Liang, LIU Zhenguang. Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
[2] TIAN Mengzhen, WANG Yong, LI Tao, WANG Chuan, GUO Quanzhong, GUO Jianxi. Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[3] HE Jiaxuan, ZHANG Yutong, GUAN Xudong, TANG Jianhua, HUANG Hai, ZHAO Xuhui, TANG Yuming, ZUO Yu. Present Status and Progress of Corrosion Protection for Microchannel Heat Exchangers of Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[4] GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[5] DENG Zhibin, HU Xiao, LIU Yingyan, YUE Hang, ZHANG Qian, TANG Haiping, LU Rui. Effect of Magnetic Field on Corrosion Behavior of L360 Pipeline Steel and Welded Joints in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[6] SHI Chao, LI Jiahao, WANG Rongxiang, ZHANG Bo, ZHOU Lanxin, LIU Guangming, SHAO Yawei. Effect of Different Bias Voltages on Anti-corrosion Properties of Multi-arc Ion Plated Al-coatings on 45# Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[7] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[8] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[9] LIU Guoqiang, ZHANG Dongfang, CHEN Haoxiang, FAN Zhihong, XIONG Jianbo, WU Qingfa. Electrochemical Corrosion Behavior of 2304 Duplex Stainless Steel in a Simulated Pore Solution in Reinforced Concrete Serving in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[10] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[11] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[12] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[13] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[14] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[15] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
No Suggested Reading articles found!