Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (4): 949-956    DOI: 10.11902/1005.4537.2023.297
Current Issue | Archive | Adv Search |
Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater
MA Xiaowei1, XUE Rongjie1(), WANG Taotao1, YANG Liang1, LIU Zhenguang2
1. School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China
2. School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
Cite this article: 

MA Xiaowei, XUE Rongjie, WANG Taotao, YANG Liang, LIU Zhenguang. Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 949-956.

Download:  HTML  PDF(5712KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The structure and thermal property of Zr-based amorphous alloys Zr41.2Ti13.8Cu12.5Ni10Be22.5(Vit1) and Zr55Cu30Al10Ni5(Zr55) were determined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The electrochemical behavior of two Zr-based amorphous alloys and two traditional metal alloys (304 stainless steel and 6082 Al-alloy) in 3.5%NaCl and simulated seawater solution were comparatively assessed via electrochemical workstation, scanning electron microscope (SEM) and energy dispersive spectroscope (EDS). The results show that the four metallic alloys present pitting corrosion, but the amorphous alloys show higher corrosion resistance. Tacking the polarization curves aquired in 3.5%NaCl solution as comparison, it follows that the polarization curves of amorphous alloys and conventional alloys in the simulated seawater showed negative shift, which was attributed to the large amount of sulfate and chloride dissolved in the simulated seawater. Compared to the traditional metallic alloys, the passive film formed on the surface of amorphous alloys is more stable.

Key words:  amorphous alloy      electrochemical      simulated seawater      corrosion resistance     
Received:  18 September 2023      32134.14.1005.4537.2023.297
ZTFLH:  TG172.5  
Fund: National Natural Science Foundation of China(51801083)
Corresponding Authors:  XUE Rongjie, E-mail: xuerongjie@jsut.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.297     OR     https://www.jcscp.org/EN/Y2024/V44/I4/949

MaterialSiMnCrNiZnMgCuCTiMoPFeAl
304 stainless steel0.2061.27216.8277.792--0.1900.0560.2480.0750.014Bal.-
6082 Al-alloy1.0400.6170.1300.0070.0300.7200.046-0.020--0.270Bal.
Table 1  Chemical compositions of 304 stainless steel and 6082 Al-alloy
Fig.1  XRD patterns and DSC curves (the insert) of two test amorphous alloys
Fig.2  Potentiodynamic polarization curves of four alloys in 3.5%NaCl solution (a) and simulated seawater (b)
SampleMaterialEcorr / mVIcorr / A·cm-2Epit / mV
3.5%NaClVit 1-3152.8 × 10-8-148
Zr55 alloy-3182.7 × 10-7-145
304 stainless steel-3318.1 × 10-7-101
6082 Al-alloy-7881.0 × 10-6-658
Seawater solutionVit1-3217.6 × 10-8-79
Zr55 alloy-3553.0 × 10-7-121
304 stainless steel-3711.3 × 10-6-127
6082 Al-alloy-8702.3 × 10-6-740
Table 2  Fitting electrochemical parameters of potentiodynamic polarization curves of fourtest alloys
Fig.3  Equivalent circuit for fitting EIS of four test alloys
SampleMatericalRs / kΩ·cm2Q / kΩ·cm-2·s-nnRct / kΩ·cm2
3.5%NaClVit 10.1079.792 × 10-80.90180874.190
Zr55 alloy0.0111.067 × 10-80.89562470.470
304 stainless steel0.0122.172 × 10-80.90786336.580
6082 Al-alloy0.0131.195 × 10-80.8408426.802
Seawater solutionVit 10.0279.672 × 10-80.90435836.040
Zr55 alloy0.0301.192 × 10-80.91683306.570
304 stainless steel0.0385.104 × 10-80.72693200.110
6082 Al-alloy0.0123.981 × 10-80.7912012.586
Table 3  Fitting results of EIS of four test alloys
Fig.4  Nyquist (a,d) and Bode (b, c, e, f) plots of four alloys in 3.5%NaCl solution (a-c) and simulated seawater (d-f)
Fig.5  SEM surface morphologies of four test alloys after polarization in 3.5%NaCl solution (a-d) and simulated seawater (e-h)
Fig.6  SEM surface morphologies and EDS elemental mappings of Vit1 (a, c) and Zr55 (b, d) amorphous alloys after corrosion in 3.5%NaCl solution (a, b) and simulated seawater (c, d)
[1] Wang H R, Wu J H, Wang J T, et al. Study on the corrosion & electrochemical properties of alloy AA5083 and the effect of active chlorine in seawater [J]. Electrochemistry, 2003, 9: 60
王洪仁, 吴建华, 王均涛 等. 5083铝合金在海水中的腐蚀电化学行为及活性氯影响研究 [J]. 电化学, 2003, 9: 60
[2] Wang W H. Development and implication of amorphous alloys [J]. Bull. Chin. Acad. Sci., 2022, 37: 352
汪卫华. 非晶合金材料发展趋势及启示 [J]. 中国科学院院刊, 2022, 37: 352
[3] Slobodyan M. Dissimilar welding and brazing of zirconium and its alloys: methods, parameters, metallurgy and properties of joints [J]. J. Manuf. Process., 2022, 75: 928
[4] Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, 44R: 45
[5] Kennedy D, Norman C. What don’t we know? [J]. Science, 2005, 309: 75
pmid: 15994521
[6] Xue R J, Zhao L Z, Yi J J. Strain aging in metallic glasses [J]. Mater. Lett., 2022, 306: 130931
[7] Khonik V A. Amorphous physics and materials: interstitialcy theory of condensed matter states and its application to non-crystalline metallic materials [J]. Chin. Phys., 2017, 26B: 016401
[8] Xue R J, Zhao L Z, Cai Y Q, et al. Correlation between boson peak and thermal expansion manifested by physical aging and high pressure [J]. Sci. China Phys. Mech. Astron., 2022, 65: 246111
[9] Liens A, Ter-Ovanessian B, Courtois N, et al. Effect of alloying elements on the microstructure and corrosion behavior of TiZr-based bulk metallic glasses [J]. Corros. Sci., 2020, 177: 108854
[10] Jiang J, Wang Z B, Pang S J, et al. Oxygen impurity improving corrosion resistance of a Zr-based bulk metallic glass in 3.5 wt% NaCl solution [J]. Corros. Sci., 2021, 192: 109867
[11] Wang D P, Wang S L, Wang J Q. Relationship between amorphous structure and corrosion behaviour in a Zr–Ni metallic glass [J]. Corros. Sci., 2012, 59: 88
[12] Sun B A, Wang W H. The fracture of bulk metallic glasses [J]. Prog. Mater. Sci., 2015, 74: 211
[13] Xie S H, Kruzic J J. Cold rolling improves the fracture toughness of a Zr-based bulk metallic glass [J]. J. Alloy. Compd., 2017, 694: 1109
[14] Chieh T C, Chu J, Liu C T, et al. Corrosion of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glasses in aqueous solutions [J]. Mater. Lett., 2003, 57: 3022
[15] Wang Y F, Si J J, Si Y D, et al. Preparation and electrochemical corrosion performances of Zr-Ti-Ni-Cu-Be high-entropy bulk metallic glasses [J]. Mater. Sci. Eng., 2023, 289B: 116267
[16] Qin X J. Corrosion resistance of Zr41.5Ti14Cu13Ni10Be22.5 bulk amorphous alloy [J]. Corros. Sci. Prot. Technol., 2003, 15: 52
秦秀娟. Zr41.5Ti14Cu13Ni10Be22.5大块非晶的耐蚀性能 [J]. 腐蚀科学与防护技术, 2003, 15: 52
[17] Gebert A, Mummert K, Eckert J, et al. Electrochemical investigations on the bulk glass forming Zr55Cu30Al10Ni5 alloy [J]. Mater. Corros., 1997, 48: 293
[18] Mudali U K, Scudino S, Kühn U, et al. Polarisation behaviour of the Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 alloy in different microstructural states in acid solutions [J]. Scr. Mater., 2004, 50: 1379
[19] Wang B, Xu K K, Shi X H, et al. Electrochemical and chemical corrosion behaviors of the in-situ Zr-based metallic glass matrix composites in chloride-containing solutions [J]. J. Alloy. Compd., 2019, 770: 679
doi: 10.1016/j.jallcom.2018.08.174
[20] Wiest A, Wang G Y, Huang L, et al. Corrosion and corrosion fatigue of Vitreloy glasses containing low fractions of late transition metals [J]. Scr. Mater., 2010, 62: 540
[21] Shi H Q, Zhao W B, Wei X W, et al. Effect of Ti addition on mechanical properties and corrosion resistance of Ni-free Zr-based bulk metallic glasses for potential biomedical applications [J]. J. Alloy. Compd., 2020, 815: 152636
[22] Gan Y Y, Liu H, Li G, et al. Effect of Ni on corrosion behavior of Zr-Cu-Al amorphous alloys in NaCl solution [J]. Rare Met. Mater. Eng., 2022, 51: 712
甘有祎, 刘 昊, 李 广 等. Ni对Zr-Cu-Al系非晶合金在NaCl溶液中耐腐蚀性能的影响 [J]. 稀有金属材料与工程, 2022, 51: 712
[23] Cao Q P, Peng S, Zhao X N, et al. Effect of Nb substitution for Cu on glass formation and corrosion behavior of Zr-Cu-Ag-Al-Be bulk metallic glass [J]. J. Alloy. Compd., 2016, 683: 22
[24] Yang L, Zhang H R, Zhang S, et al. Effect of Cu content on the corrosion behavior of Ti-based bulk amorphous alloys in HCl solution [J]. Mater. Lett., 2023, 337: 133742
[25] Qiu Z W J, Li Z K, Fu H M, et al. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46: 33
doi: 10.1016/j.jmst.2019.10.043
[26] Tauseef A, Tariq N H, Akhter J I, et al. Corrosion behavior of Zr-Cu-Ni-Al bulk metallic glasses in chloride medium [J]. J. Alloy. Compd., 2010, 489: 596
[27] Wang D P, Li X, Chen Z. et al. Susceptibility of chloride ion concentration, temperature, and surface roughness on pitting corrosion of CoCrFeNi medium-entropy alloy [J]. Mater. Corros., 2022, 73: 106
[28] Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883
doi: 10.11902/1005.4537.2020.184
[29] Yan Z, Zhang C Y, Wang L X, et al. Effect of structural stability on electrochemical corrosion properties of Zr-based amorphous alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 79
阎 竹, 张晨阳, 王立新 等. 结构稳定性对Zr基非晶合金电化学腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 79
[30] Dai C D, Fu Y, Guo J X, et al. Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering [J]. Int. J. Min. Met. Mater., 2020, 27: 1388
[31] Ares A E, Gassa L M. Corrosion susceptibility of Zn-Al alloys with different grains and dendritic microstructures in NaCl solutions [J]. Corros. Sci., 2012, 59: 290
[32] Wang Y M, Yang Y H, Qu J L, et al. Effect of oxide layer on the electrochemical corrosion behavior of a Ni-based superalloy in 3.5 wt% NaCl [J]. Int. J. Electrochem. Sc., 2023, 18: 100310
[33] Ribeiro D V, Abrantes J C C, et al. Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: a new approach [J]. Constr. Build. Mater., 2016, 111: 98
[34] Kong W C, Li K M, Hu J. Immersion corrosion behavior, electrochemical performance and corrosion mechanism of subsonic flame sprayed FeCoCrMoSi amorphous coating in 3.5% NaCl solution [J]. Int. J. Hydrogen Energy, 2022, 47: 6911
[35] Yu L S, Tang J L, Wang H, et al. Corrosion behavior of bulk (Zr58Nb3Cu16Ni13Al10)100- x Y x (x = 0, 0.5, 2.5 at.%) metallic glasses in sulfuric acid [J]. Corros. Sci., 2019, 150: 42
[36] Gebert A, Buchholz K, Leonhard A, et al. Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses [J]. Mater. Sci. Eng., 1999, 267A: 294
[37] Cheng Q D, Wang Y H. Effect of surface scratches on corrosion behavior of 304 stainless steel beneath droplets of solution (0.5 mol/L NaCl + 0.25 mol/L MgCl2) [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 99
程琪栋, 王燕华. 表面划痕对304不锈钢液滴腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 99
doi: 10.11902/1005.4537.2020.281
[38] Ji K Q, Li G F, Zhao L. Pitting behavior of two stainless steels in simulated heavy water reactor primary solution and 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 653
纪开强, 李光福, 赵 亮. 两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 653
doi: 10.11902/1005.4537.2020.252
[39] Duang T G, Li Z, Peng W S, et al. Corrosion characteristics of 5A06 Al-alloy exposed in natural deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 352
段体岗, 李 祯, 彭文山 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43: 352
doi: 10.11902/1005.4537.2022.102
[40] Li Y, Xu J. Differences in pitting growth kinetics between Zr60Ni25Al15 and Zr60Cu25Al15 Metallic glasses exposed to a 0.6 M NaCl aqueous solution [J]. Corros. Sci., 2017, 128: 73
[41] Lu H B, Zhang L C, Gebert A, et al. Pitting corrosion of Cu-Zr metallic glasses in hydrochloric acid solutions [J]. J. Alloy. Compd., 2008, 462: 60
[42] Zhang H R, Wu H Y, Wang S L, et al. Pitting behavior of Fe-based amorphous alloy with sulfide inclusion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 477
张浩然, 吴鸿燕, 王善林 等. 含硫化物夹杂的铁基非晶合金点蚀规律 [J]. 中国腐蚀与防护学报, 2021, 41: 477
doi: 10.11902/1005.4537.2020.148
[1] WANG Bo, AN Shizhong, GUO Junqing, JI Yunguang, LI Zhiqiang. Electrochemical Performance of Commercial MB1 and MB8 Mg-alloys in NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1073-1080.
[2] TIAN Mengzhen, WANG Yong, LI Tao, WANG Chuan, GUO Quanzhong, GUO Jianxi. Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1064-1072.
[3] LIN Yi, LIU Tao, GUO Yanbing, RUAN Qing, GUO Zhangwei, DONG Lihua. Research and Development of Welding Materials For Low-temperature Steel and Corrosion Evaluation Methods[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[4] DU Guang, LU Guoqiang, DENG Longhui, JIANG Jianing, CAO Xueqiang. Effect of Aluminum Content on Corrosion Behavior of Ni-Al Alloys in Dilute Sulfuric Acid Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1011-1021.
[5] HE Jiaxuan, ZHANG Yutong, GUAN Xudong, TANG Jianhua, HUANG Hai, ZHAO Xuhui, TANG Yuming, ZUO Yu. Present Status and Progress of Corrosion Protection for Microchannel Heat Exchangers of Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[6] LIU Zhe, DENG Chengman, WEI Junsheng, XIA Da-Hai. Fast Evaluation of Resistance to High Temperature Steam Sterilization Process for Organic Coating Coated Tinplate by Electrochemical Method[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[7] HUANG Jufeng, SONG Guangling. Research Progress on Corrosion Testing and Analysis of Mg-alloys[J]. 中国腐蚀与防护学报, 2024, 44(3): 519-528.
[8] FU Jiangyue, GUO Jianxi, YANG Yange, LENG Zhe, WANG Wen. Erosion-corrosion Behavior of a High Strength Low Alloy Steel in Flowing 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 585-600.
[9] LI Zhuoxuan, CAO Yanhui, LI Chongjie, LI Hui, ZHANG Xiaoming, YONG Xingyue. Relationship Between Corrosion Failure Degree of Organic Coatings and Mechanical Properties for Dissimilar Metal Assamblies[J]. 中国腐蚀与防护学报, 2024, 44(3): 679-690.
[10] LI Chan, WANG Qingtian, YANG Chenggang, ZHANG Xianwei, HAN Dongao, LIU Yuwei, LIU Zhiyong. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[11] DENG Shuangjiu, LI Chang, YU Menghui, HAN Xing. Prpogation Mechanism of Microcracks Caused by Corrosion of Laser Cladded In625 Coating on Nodular Cast Iron in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(3): 645-657.
[12] GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[13] LONG Wujian, TANG Jie, LUO Qiling, QIU Zhanghong, WANG Hailong. Corrosion Inhibition Performance of Biomass-derived Carbon Dots on Q235 Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 807-814.
[14] SHI Chao, LI Jiahao, WANG Rongxiang, ZHANG Bo, ZHOU Lanxin, LIU Guangming, SHAO Yawei. Effect of Different Bias Voltages on Anti-corrosion Properties of Multi-arc Ion Plated Al-coatings on 45# Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[15] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
No Suggested Reading articles found!