Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (5): 1323-1331    DOI: 10.11902/1005.4537.2023.339
Current Issue | Archive | Adv Search |
Molecular Dynamics Simulation of Diffusion Behavior of Benzotriazole and Sodium Benzoate in Volatile Corrosion Inhibitor Film
CHENG Xueyu1, YE Huan1, GUO Chenghao1, LU Lixin1,2(), LI Weizhe3
1 School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
2 Key Laboratory of Advanced Manufacturing Equipment Technology for Foodstuffs in Jiangsu Province, Wuxi 214122, China
3 Shenyang Rustproof Packaging Material Co., Ltd., Shenyang 110033, China
Cite this article: 

CHENG Xueyu, YE Huan, GUO Chenghao, LU Lixin, LI Weizhe. Molecular Dynamics Simulation of Diffusion Behavior of Benzotriazole and Sodium Benzoate in Volatile Corrosion Inhibitor Film. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1323-1331.

Download:  HTML  PDF(7816KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The diffusion behavior of benzotriazole and sodium benzoate in low-density polyethylene of volatile corrosion inhibitor film was studied via a constant temperature and humidity chamber at different temperature, as well as molecular dynamics simulations at the molecular level, comparatively. The effect of the shape and size of the corrosion inhibitor molecules, temperature, free volume of the diffusion system, self-diffusion in low density polyethylene, and the interaction energy between the corrosion inhibitor molecules, and the low-density polyethylene on the diffusion rate of the corrosion inhibitors was analyzed. The results show that the diffusion rate of benzotriazole and sodium benzoate in the low-density polyethylene increased with increasing temperature, moreover, the diffusion rate of the single benzotriazole was less than that of sodium benzoate. When co-existence of benzotriazole and sodium benzoate in the polyethylene, their diffusion rates lowered in contrast to that the polyethylene containing only one inhibitor either benzotriazole or sodium benzoate, and which decreased with the increasing sodium benzoate content. The interaction between the corrosion inhibitor molecules and the interaction between the corrosion inhibitor and the diffusion system were important factors affecting the diffusion of the corrosion inhibitor, and the diffusion of sodium benzoate may have an inhibitory effect on the diffusion of benzotriazole. The measured and simulated diffusion coefficients of benzotriazole in low-density polyethylene show the same variation trend, but their values differ by one order of magnitude. Even so, the result can still provide a technical reference for release control and formulation of corrosion inhibitors.

Key words:  benzotriazole      sodium benzoate      volatile corrosion inhibitor      molecular dynamics simulation      diffusion     
Received:  31 October 2023      32134.14.1005.4537.2023.339
ZTFLH:  TG174  
Corresponding Authors:  LU Lixin, E-mail: lulx@jiangnan.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.339     OR     https://www.jcscp.org/EN/Y2024/V44/I5/1323

Fig.1  Process of molecular dynamics simulation
ModelTemperature / KSBBTALDPE
BTA-LDPE298021
313
SB-LDPE201
328
BTA-SB-LDPE313221
621
1021
Table 1  Parameters of cell models
Fig.2  Cell structure of different diffusion systems at 313 K: (a) SB-LDPE, (b) BTA-LDPE, (c) SB-BTA-LDPE
Fig.3  MSD of BTA/SB in LDPE at different temperatures: (a) BTA-LDPE, (b) SB-LDPE
Fig.4  MSD with different ratios of BTA/SB at 313 K: (a) SB-BTA-LDPE = 2∶2∶1, (b) SB-BTA-LDPE = 6∶2∶1, (c) SB-BTA-LDPE = 10∶2∶1
ModelTemperature / KDiffusion coefficient / cm2·s-1
BTASB
BTA-LDPE2981.96 × 10-7-
3132.22 × 10-7-
3282.43 × 10-7-
SB-LDPE298-3.16 × 10-7
313-3.94 × 10-7
328-6.51 × 10-7
SB-BTA-LDPE = 2∶2∶13139.03 × 10-81.62 × 10-7
SB-BTA-LDPE = 6∶2∶14.75 × 10-87.07 × 10-8
SB-BTA-LDPE = 10∶2∶12.57 × 10-83.38 × 10-8
Table 2  Diffusion coefficient of BTA/SB in different diffusion systems
Fig.5  Release amount of BTA in different diffusion systems: (a) release of BTA one-component VCI film at different temperatures, (b) release of BTA from two-component VCI film at 313 K
ModelTemperature / KDiffusion coefficient / cm2·s-1
BTA-LDPE2981.37 × 10-8
3132.89 × 10-8
3284.02 × 10-8
SB-BTA-LDPE = 2∶2∶13139.12 × 10-9
SB-BTA-LDPE = 6∶2∶18.36 × 10-9
SB-BTA-LDPE = 10∶2∶17.49 × 10-9
Table 3  Diffusion coefficient of BTA by experiment
Fig.6  Radius of rotation of BTA / SB
Fig.7  Free volume distribution of different diffusion systems: (a) free volume distribution of SB-LDPE system at 298, 313 and 328 K, (b) free volume distribution of BTA-LDPE system at 298, 313 and 328 K, (c) free volume distribution of different formulations of BTA-SB-LDPE system at 313 K
ModelTemperature / KFFV / %
BTA-LDPE29815.31
31319.07
32819.56
SB-LDPE29816.47
31319.35
32819.98
SB-BTA-LDPE = 2∶2∶131319.07
SB-BTA-LDPE = 6∶2∶116.64
SB-BTA-LDPE = 10∶2∶112.54
Table 4  Free volume fractions of different diffusion systems
ModelTemperature / KInteraction energy / J·mol-1
BTASB
BTA-LDPE298-166,602.80-
313-153,793.64-
328-153,668.06-
SB-LDPE298--150,109.96
313--144,082.12
328--136,589.18
SB-BTA-LDPE = 2∶2∶1313-352,963.52-354,010.02
SB-BTA-LDPE = 6∶2∶1-429,148.72-744,480.10
SB-BTA-LDPE = 10∶2∶1-520,570.96-1,107,364.44
Table 5  Interaction energy between VCI and diffusion crystal
Fig.8  MSD of LDPE self-diffusion in different diffusion systems: (a) BTA-LDPE, (b) SB-LDPE, (c) BTA-SB-LDPE
ModelTemperature / KSelf-diffusion coefficient / cm2·s-1
BTA-LDPE2986.24 × 10-8
3139.37 × 10-8
3281.08 × 10-7
SB- LDPE2981.13 × 10-7
3131.34 × 10-7
3281.39 × 10-7
SB-BTA-PE = 2∶2∶13136.70 × 10-8
SB-BTA-PE = 6∶2∶15.22 × 10-8
SB-BTA-PE = 10∶2∶13.81 × 10-8
Table 6  Self-diffusion coefficient of LDPE in different diffusion systems
Fig.9  Diffusion trajectories of BTA, SB in different diffusion systems: (a) diffusion trajectories of BTA, SB in LDPE at 298 K, (b) diffusion trajectories of BTA, SB in LDPE at 313 K, (c) diffusion trajectories of BTA, SB in LDPE at 328 K, (d) diffusion trajectories of BTA, SB in SB-BTA- LDPE (2∶2∶1) at 313 K, (e) diffusion trajectories of BTA, SB in SB-BTA- LDPE (6∶2∶1) at 313 K, (f) diffusion trajectories of BTA, SB in SB-BTA-LDPE (10∶2∶1) at 313 K
1 Raja P B, Ismail M, Ghoreishiamiri S, et al. Reviews on corrosion inhibitors: a short view [J]. Chem. Eng. Commun., 2016, 203: 1145
2 Zhang D Q. Key issues regarding development of volatile corrosion inhibitors and their application [J]. J. Shanghai Univ. Electr. Power, 2019, 35: 1
张大全. 气相缓蚀剂的研究开发及应用中若干问题的探讨 [J]. 上海电力学院学报, 2019, 35: 1
3 Valdez B, Schorr M, Cheng N, et al. Technological applications of volatile corrosion inhibitors [J]. Corros. Rev., 2018, 36: 227
4 Basitnezhad F, Ebadi-Dehaghani H. Controlled release of novel volatile corrosion inhibitor (VCI) nanoparticles incorporated in low density polyethylene (LDPE) films for steel coverings: correlation of experimental results with molecular dynamics simulation [J]. J. Macromol. Sci., 2021, 60B: 416
5 Gangopadhyay S, Mahanwar P A. Recent developments in the volatile corrosion inhibitor (VCI) coatings for metal: a review [J]. J. Coat. Technol. Res., 2018, 15: 789
6 Dudler V, Muiños C. Diffusion of benzotriazoles in polypropylene: influence of polymer morphology and stabilizer structure [J]. Adv. Chem., 1996, 249: 441
7 Ebadi-Dehaghani H. Diffusion of 1,2,3-benzotriazole as a volatile corrosion inhibitor through common polymer films using the molecular dynamics simulation method [J]. J. Macromol. Sci., 2016, 55B: 310
8 Yan L Y, Li W Q, Zhan T R. Research progress of volatile corrosion inhibitor [J]. Shandong Chem. Ind., 2023, 52(12): 66
闫丽艳, 李文强, 詹天荣. 气相缓蚀剂及其研究进展 [J]. 山东化工, 2023, 52(12): 66
9 Wang Y H, Wang W H, Zhang Z Q, et al. Study of the glass transition temperature and the mechanical properties of PET/modified silica nanocomposite by molecular dynamics simulation [J]. Eur. Polym. J., 2016, 75: 36
10 Zhang J, Yu W Z, Yu L J, et al. Molecular dynamics simulation of corrosive particle diffusion in benzimidazole inhibitor films [J]. Corros. Sci., 2011, 53: 1331
11 Chen X, Lu L X, Qiu X L, et al. Controlled release mechanism of complex bio-polymeric emulsifiers made microspheres embedded in sodium alginate based films [J]. Food Control, 2017, 73: 1275
12 Hatzigrigoriou N B, Papaspyrides C D, Joly C, et al. Effect of migrant size on diffusion in dry and hydrated polyamide 6 [J]. J. Agric. Food Chem., 2010, 58: 8667
13 Kong L Z, Dong K H, Tang Y H, et al. Molecular dynamics simulation of the influence of PEG-TDI aging degradation on diffusibility and compatibility of NG and BTTN [J]. Propell. Explos. Pyrot., 2021, 46: 1436
14 Kruse J, Kanzow J, Rätzke K, et al. Free volume in polyimides: positron annihilation experiments and molecular modeling [J]. Macromolecules, 2005, 38: 9638
15 Duffour E, Malfreyt P. Structure and thermodynamic properties from molecular dynamics simulations of the polyethylene crystal [J]. Polymer, 2002, 43: 6341
16 Sun L N, Lu L X, Pan L, et al. Development of active low-density polyethylene (LDPE) antioxidant packaging films: controlled release effect of modified mesoporous silicas [J]. Food Packag. Shelf Life, 2021, 27: 100616
17 Farahani M, Jahani Y, Kakanejadifard A, et al. Self-assembly behavior of temperature sensitive additive in polypropylene matrix: molecular dynamics simulations [J]. Mater. Today Commun., 2022, 31: 103529
18 Raptis T E, Raptis V E, Samios J. New effective method for quantitative analysis of diffusion jumps, applied in molecular dynamics simulations of small molecules dispersed in short chain systems [J]. J. Phys. Chem., 2007, 111B: 13683
[1] LI Kaiyang, ZHAI Yunlong, HU Xinyu, WU Hong, LIU Bin, XING Shaohua, HOU Jian, ZHANG Fan, ZHANG Naiqiang. Research Progress on High Temperature Corrosion of Eutectic High Entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[2] WU Liangliang, YIN Ruozhan, CHEN Zhaoxu, LIANG Junyue, SUN Qingqing, WU Liankui, CAO Fahe. Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[3] LI Jiaheng, QIAN Wei, ZHU Jingjing, CAI Jie, HUA Yinqun. Influence of Laser Shock Peening on Microstructure and Oxidation Performance of Nickel-based Single Crystal Superalloy[J]. 中国腐蚀与防护学报, 2024, 44(5): 1295-1304.
[4] HAO Wenkui, CHEN Xin, XU Lingling, HAN Yu, CHEN Yun, HUANG Luyao, ZHU Zhixiang, YANG Bingkun, WANG Xiaofang, ZHANG Qiang. Drawing of Atmospheric Corrosion Map of Carbon Steel and Galvanized Steel for Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[5] YAO Chan, CHEN Jian, MING Hongliang, WANG Jianqiu. Research Progress on Hydrogen Permeability Behavior of Pipeline Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 209-219.
[6] PENG Hao, CHENG Xiaoying, LI Xiaoliang, WANG Zhaofeng, CAI Zhenxiang. Effect of V and Nb on Hydrogen Traps in High Strength Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420.
[7] LIU Yongqiang, LIU Guangming, FAN Wenxue, TANG Rongmao, GAN Hongyu, SHI Chao. Effect of Sodium Benzoate on Dissolution Behavior of Zn Anode in Acidic Zn-Ni Plating Bath[J]. 中国腐蚀与防护学报, 2022, 42(4): 605-612.
[8] ZHANG Zhengyang, GUO Zixin, ZHOU Xin, SUN Haijing, SUN Jie. Preparation and Performance of Epoxy Resin Coating with Benzotriazole Inhibitor Charged Nano-halloysite Tubes[J]. 中国腐蚀与防护学报, 2022, 42(4): 705-708.
[9] CHEN Hao, FAN Zhibin, CHEN Zhijian, ZHOU Xuejie, ZHENG Penghua, WU Jun. Effect of Cl- and HSO3- on Corrosion Behavior of 439 Stainless Steel Used in Construction[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[10] GAO Haodong, CUI Yu, LIU Li, MENG Fandi, LIU Rui, ZHENG Hongpeng, WANG Fuhui. Influence of Simulated Deep Sea Pressured-flowing Seawater on Failure Behavior of Epoxy Glass Flake Coating[J]. 中国腐蚀与防护学报, 2022, 42(1): 39-50.
[11] XU Guifang, LI Yuan, LEI Yucheng, ZHU Qiang. Effect of Relative Flow Velocity on Corrosion Behavior of High Nitrogen Austenitic Stainless Steel in Liquid Lead-bismuth Eutectic Alloy[J]. 中国腐蚀与防护学报, 2021, 41(6): 899-904.
[12] SHI Jian, HU Xuewen, HE Bo, YANG Zheng, GUO Rui, WANG Fei. Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[13] WANG Jia, LIU Xiaoyong, GAO Lingqing, ZHA Xiaoqin, LUO Xianfu, ZHANG Wenli, ZHANG Hengkun. Hydrogen Absorption Behavior of Near α Ti70 Alloy[J]. 中国腐蚀与防护学报, 2021, 41(4): 549-554.
[14] LV Xianghong, MA Xiaofeng, HU Zhaowei, LI Yuanyuan, WANG Chen. Corrosion Behavior of T/S-52K Straight Seam Pipeline Steel in Solutions of Different NaCl Concentration[J]. 中国腐蚀与防护学报, 2021, 41(4): 555-559.
[15] SUN Weisong, YU Sirong, GAO Song, YAO Xinkuan, XU Hailiang, QIAN Bing, WANG Bingzi. Molecular Dynamics Simulation of Water Molecule Diffusion in Graphene-reinforced Epoxy Resin Anticorrosive Coatings[J]. 中国腐蚀与防护学报, 2021, 41(3): 411-416.
No Suggested Reading articles found!