|
|
Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater |
MA Xiaowei1, XUE Rongjie1( ), WANG Taotao1, YANG Liang1, LIU Zhenguang2 |
1. School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China 2. School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China |
|
Cite this article:
MA Xiaowei, XUE Rongjie, WANG Taotao, YANG Liang, LIU Zhenguang. Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 949-956.
|
Abstract The structure and thermal property of Zr-based amorphous alloys Zr41.2Ti13.8Cu12.5Ni10Be22.5(Vit1) and Zr55Cu30Al10Ni5(Zr55) were determined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). The electrochemical behavior of two Zr-based amorphous alloys and two traditional metal alloys (304 stainless steel and 6082 Al-alloy) in 3.5%NaCl and simulated seawater solution were comparatively assessed via electrochemical workstation, scanning electron microscope (SEM) and energy dispersive spectroscope (EDS). The results show that the four metallic alloys present pitting corrosion, but the amorphous alloys show higher corrosion resistance. Tacking the polarization curves aquired in 3.5%NaCl solution as comparison, it follows that the polarization curves of amorphous alloys and conventional alloys in the simulated seawater showed negative shift, which was attributed to the large amount of sulfate and chloride dissolved in the simulated seawater. Compared to the traditional metallic alloys, the passive film formed on the surface of amorphous alloys is more stable.
|
Received: 18 September 2023
32134.14.1005.4537.2023.297
|
|
Fund: National Natural Science Foundation of China(51801083) |
Corresponding Authors:
XUE Rongjie, E-mail: xuerongjie@jsut.edu.cn
|
[1] |
Wang H R, Wu J H, Wang J T, et al. Study on the corrosion & electrochemical properties of alloy AA5083 and the effect of active chlorine in seawater [J]. Electrochemistry, 2003, 9: 60
|
|
王洪仁, 吴建华, 王均涛 等. 5083铝合金在海水中的腐蚀电化学行为及活性氯影响研究 [J]. 电化学, 2003, 9: 60
|
[2] |
Wang W H. Development and implication of amorphous alloys [J]. Bull. Chin. Acad. Sci., 2022, 37: 352
|
|
汪卫华. 非晶合金材料发展趋势及启示 [J]. 中国科学院院刊, 2022, 37: 352
|
[3] |
Slobodyan M. Dissimilar welding and brazing of zirconium and its alloys: methods, parameters, metallurgy and properties of joints [J]. J. Manuf. Process., 2022, 75: 928
|
[4] |
Wang W H, Dong C, Shek C H. Bulk metallic glasses [J]. Mater. Sci. Eng., 2004, 44R: 45
|
[5] |
Kennedy D, Norman C. What don’t we know? [J]. Science, 2005, 309: 75
pmid: 15994521
|
[6] |
Xue R J, Zhao L Z, Yi J J. Strain aging in metallic glasses [J]. Mater. Lett., 2022, 306: 130931
|
[7] |
Khonik V A. Amorphous physics and materials: interstitialcy theory of condensed matter states and its application to non-crystalline metallic materials [J]. Chin. Phys., 2017, 26B: 016401
|
[8] |
Xue R J, Zhao L Z, Cai Y Q, et al. Correlation between boson peak and thermal expansion manifested by physical aging and high pressure [J]. Sci. China Phys. Mech. Astron., 2022, 65: 246111
|
[9] |
Liens A, Ter-Ovanessian B, Courtois N, et al. Effect of alloying elements on the microstructure and corrosion behavior of TiZr-based bulk metallic glasses [J]. Corros. Sci., 2020, 177: 108854
|
[10] |
Jiang J, Wang Z B, Pang S J, et al. Oxygen impurity improving corrosion resistance of a Zr-based bulk metallic glass in 3.5 wt% NaCl solution [J]. Corros. Sci., 2021, 192: 109867
|
[11] |
Wang D P, Wang S L, Wang J Q. Relationship between amorphous structure and corrosion behaviour in a Zr–Ni metallic glass [J]. Corros. Sci., 2012, 59: 88
|
[12] |
Sun B A, Wang W H. The fracture of bulk metallic glasses [J]. Prog. Mater. Sci., 2015, 74: 211
|
[13] |
Xie S H, Kruzic J J. Cold rolling improves the fracture toughness of a Zr-based bulk metallic glass [J]. J. Alloy. Compd., 2017, 694: 1109
|
[14] |
Chieh T C, Chu J, Liu C T, et al. Corrosion of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glasses in aqueous solutions [J]. Mater. Lett., 2003, 57: 3022
|
[15] |
Wang Y F, Si J J, Si Y D, et al. Preparation and electrochemical corrosion performances of Zr-Ti-Ni-Cu-Be high-entropy bulk metallic glasses [J]. Mater. Sci. Eng., 2023, 289B: 116267
|
[16] |
Qin X J. Corrosion resistance of Zr41.5Ti14Cu13Ni10Be22.5 bulk amorphous alloy [J]. Corros. Sci. Prot. Technol., 2003, 15: 52
|
|
秦秀娟. Zr41.5Ti14Cu13Ni10Be22.5大块非晶的耐蚀性能 [J]. 腐蚀科学与防护技术, 2003, 15: 52
|
[17] |
Gebert A, Mummert K, Eckert J, et al. Electrochemical investigations on the bulk glass forming Zr55Cu30Al10Ni5 alloy [J]. Mater. Corros., 1997, 48: 293
|
[18] |
Mudali U K, Scudino S, Kühn U, et al. Polarisation behaviour of the Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 alloy in different microstructural states in acid solutions [J]. Scr. Mater., 2004, 50: 1379
|
[19] |
Wang B, Xu K K, Shi X H, et al. Electrochemical and chemical corrosion behaviors of the in-situ Zr-based metallic glass matrix composites in chloride-containing solutions [J]. J. Alloy. Compd., 2019, 770: 679
doi: 10.1016/j.jallcom.2018.08.174
|
[20] |
Wiest A, Wang G Y, Huang L, et al. Corrosion and corrosion fatigue of Vitreloy glasses containing low fractions of late transition metals [J]. Scr. Mater., 2010, 62: 540
|
[21] |
Shi H Q, Zhao W B, Wei X W, et al. Effect of Ti addition on mechanical properties and corrosion resistance of Ni-free Zr-based bulk metallic glasses for potential biomedical applications [J]. J. Alloy. Compd., 2020, 815: 152636
|
[22] |
Gan Y Y, Liu H, Li G, et al. Effect of Ni on corrosion behavior of Zr-Cu-Al amorphous alloys in NaCl solution [J]. Rare Met. Mater. Eng., 2022, 51: 712
|
|
甘有祎, 刘 昊, 李 广 等. Ni对Zr-Cu-Al系非晶合金在NaCl溶液中耐腐蚀性能的影响 [J]. 稀有金属材料与工程, 2022, 51: 712
|
[23] |
Cao Q P, Peng S, Zhao X N, et al. Effect of Nb substitution for Cu on glass formation and corrosion behavior of Zr-Cu-Ag-Al-Be bulk metallic glass [J]. J. Alloy. Compd., 2016, 683: 22
|
[24] |
Yang L, Zhang H R, Zhang S, et al. Effect of Cu content on the corrosion behavior of Ti-based bulk amorphous alloys in HCl solution [J]. Mater. Lett., 2023, 337: 133742
|
[25] |
Qiu Z W J, Li Z K, Fu H M, et al. Corrosion mechanisms of Zr-based bulk metallic glass in NaF and NaCl solutions [J]. J. Mater. Sci. Technol., 2020, 46: 33
doi: 10.1016/j.jmst.2019.10.043
|
[26] |
Tauseef A, Tariq N H, Akhter J I, et al. Corrosion behavior of Zr-Cu-Ni-Al bulk metallic glasses in chloride medium [J]. J. Alloy. Compd., 2010, 489: 596
|
[27] |
Wang D P, Li X, Chen Z. et al. Susceptibility of chloride ion concentration, temperature, and surface roughness on pitting corrosion of CoCrFeNi medium-entropy alloy [J]. Mater. Corros., 2022, 73: 106
|
[28] |
Liu Q B, Liu Z D, Guo S Y, et al. Galvanic corrosion behavior of 5083 Al-alloy and 30CrMnSiA Steel in NaCl solutions [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 883
|
|
刘泉兵, 刘宗德, 郭胜洋 等. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 883
doi: 10.11902/1005.4537.2020.184
|
[29] |
Yan Z, Zhang C Y, Wang L X, et al. Effect of structural stability on electrochemical corrosion properties of Zr-based amorphous alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 79
|
|
阎 竹, 张晨阳, 王立新 等. 结构稳定性对Zr基非晶合金电化学腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 79
|
[30] |
Dai C D, Fu Y, Guo J X, et al. Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering [J]. Int. J. Min. Met. Mater., 2020, 27: 1388
|
[31] |
Ares A E, Gassa L M. Corrosion susceptibility of Zn-Al alloys with different grains and dendritic microstructures in NaCl solutions [J]. Corros. Sci., 2012, 59: 290
|
[32] |
Wang Y M, Yang Y H, Qu J L, et al. Effect of oxide layer on the electrochemical corrosion behavior of a Ni-based superalloy in 3.5 wt% NaCl [J]. Int. J. Electrochem. Sc., 2023, 18: 100310
|
[33] |
Ribeiro D V, Abrantes J C C, et al. Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: a new approach [J]. Constr. Build. Mater., 2016, 111: 98
|
[34] |
Kong W C, Li K M, Hu J. Immersion corrosion behavior, electrochemical performance and corrosion mechanism of subsonic flame sprayed FeCoCrMoSi amorphous coating in 3.5% NaCl solution [J]. Int. J. Hydrogen Energy, 2022, 47: 6911
|
[35] |
Yu L S, Tang J L, Wang H, et al. Corrosion behavior of bulk (Zr58Nb3Cu16Ni13Al10)100- x Y x (x = 0, 0.5, 2.5 at.%) metallic glasses in sulfuric acid [J]. Corros. Sci., 2019, 150: 42
|
[36] |
Gebert A, Buchholz K, Leonhard A, et al. Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses [J]. Mater. Sci. Eng., 1999, 267A: 294
|
[37] |
Cheng Q D, Wang Y H. Effect of surface scratches on corrosion behavior of 304 stainless steel beneath droplets of solution (0.5 mol/L NaCl + 0.25 mol/L MgCl2) [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 99
|
|
程琪栋, 王燕华. 表面划痕对304不锈钢液滴腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 99
doi: 10.11902/1005.4537.2020.281
|
[38] |
Ji K Q, Li G F, Zhao L. Pitting behavior of two stainless steels in simulated heavy water reactor primary solution and 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 653
|
|
纪开强, 李光福, 赵 亮. 两种不锈钢在模拟重水堆一回路溶液和3.5%NaCl溶液中的点蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 653
doi: 10.11902/1005.4537.2020.252
|
[39] |
Duang T G, Li Z, Peng W S, et al. Corrosion characteristics of 5A06 Al-alloy exposed in natural deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 352
|
|
段体岗, 李 祯, 彭文山 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43: 352
doi: 10.11902/1005.4537.2022.102
|
[40] |
Li Y, Xu J. Differences in pitting growth kinetics between Zr60Ni25Al15 and Zr60Cu25Al15 Metallic glasses exposed to a 0.6 M NaCl aqueous solution [J]. Corros. Sci., 2017, 128: 73
|
[41] |
Lu H B, Zhang L C, Gebert A, et al. Pitting corrosion of Cu-Zr metallic glasses in hydrochloric acid solutions [J]. J. Alloy. Compd., 2008, 462: 60
|
[42] |
Zhang H R, Wu H Y, Wang S L, et al. Pitting behavior of Fe-based amorphous alloy with sulfide inclusion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 477
|
|
张浩然, 吴鸿燕, 王善林 等. 含硫化物夹杂的铁基非晶合金点蚀规律 [J]. 中国腐蚀与防护学报, 2021, 41: 477
doi: 10.11902/1005.4537.2020.148
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|